178 research outputs found

    Passengers, Information, and Disruptions

    Get PDF

    Passengers, Information, and Disruptions

    Get PDF

    Real-time disruption management approach for intermodal freight transportation

    Get PDF
    The share of intermodal transportation, which is often considered as a sustainable transportation alternative, is rather low compared to road transportation. There are several reasons for this situation, including the increased need for coordination of scheduled transport services and the reduced reliability of intermodal transport chains in case of disruptions. In this regard, developing an advanced algorithmic approach can help to handle real-time data during the execution of transportation and react adequately to detected unexpected events. In this way the reliability of intermodal transport can be increased, which might help to increase its usage and to minimize the negative externalities of freight transportation. This paper proposes a novel real-time decision support system based on a hybrid simulation-optimization approach for intermodal transportation which combines offline planning with online re-planning based on real-time data about unexpected events in the transportation network. For each detected disruption, the affected services and orders are identified and the best re-planning policy is applied. The proposed decision support system is successfully tested on real-life scenarios and is capable of delivering fast and reasonably good solutions in an online environment. This research might be of particular benefit to the transport industry for using advanced solution methodologies and give advice to transportation planners about the optimal policies that can be used in case of disruptions

    Disruption Management in Passenger Railways

    Get PDF

    Disruption Management in Passenger Railways

    Get PDF

    An experimental analysis of hierarchical rail traffic and train control in a stochastic environment

    Get PDF
    The hierarchical connection of Rail Traffic Management System (TMS) and Automatic Train Operation (ATO) for mainline railways has been proposed for a while; however, few have investigated this hierarchical connection with the real field. This paper studies in detail the benefits and limitations of an integrated framework of TMS and ATO in stochastic and dynamic conditions in terms of punctuality, energy efficiency, and conflict-resolving. A simulation is built by interfacing a rescheduling tool and a stand-alone ATO tool with the realistic traffic simulation environment OpenTrack. The investigation refers to different disturbed traffic scenarios obtained by sampling train entrance delays and dwell times within a typical Monte Carlo scheme. Results obtained for the Dutch railway corridor Utrecht–Den Bosch prove the value of the approach. In case of no disruptions, the implementation of ATO systems is beneficial for maintaining timetables and saving energy costs. In case of delay disruptions, the TMS rescheduling has its full effect only if trains are able to follow TMS rescheduled timetables, while the energy-saving by using ATO can only be achieved with conflict-free schedules. A bi-directional communication between ATO and TMS is therefore beneficial for conflict-resolving and energy saving

    Risk-based inspection planning of rail infrastructure considering operational resilience

    Get PDF
    This research proposes a response model for a disrupted railway track inspection plan. The proposed model takes the form of an active acceptance risk strategy while having been developed under the disruption risk management framework. The response model entails two components working in a series; an integrated Nonlinear Autoregressive model with eXogenous input Neural Network (iNARXNN), alongside a risk-based value measure for predicting track measurements data and an output valuation. The neural network fuses itself to Bayesian inference, risk aversion and a data-driven modelling approach, as a means of ensuring the utmost standard of prediction ability. Testing on a real dataset indicates that the iNARXNN model provides a mean prediction accuracy rate of 95%, while also successfully preserving data characteristics across both time and frequency domains. This research also proposes a network-based model that highlights the value of accepting iNARXNN’s outputs. The value is formulated as the ratio of rescheduling cost to a change in the risk level from a missed opportunity to repair a defective track, i.e., late defect detection. The value model demonstrates how the resilience action is useful for determining a rescheduling strategy that has (negative) value when dealing with a disrupted track inspection pla

    Passengers, Information, and Disruptions

    Get PDF
    Passengers traveling in public transport generate a detailed digital track record of their journey through using automated fare collection systems and carrying mobile devices. This information on passenger behavior has only recently become available to public transport operators. This thesis addresses the question how this new information can be used to improve passenger service in case of disruptions in public transportation. Major disruptions cause the current logistical schedule of the operator to be infeasible. Adjusting this schedule to the disruption is a complicated planning problem. Passengers will adjust their journeys to the new schedule, and may need to adjust their route choice due to the route choice of other passengers in case of capacity shortages. Therefore the passenger service results from a complex interaction between passengers themselves, and between passengers and the schedule. This thesis proposes new models for improving passenger service in case of major disruptions by adjusting the schedule while anticipating passenger’s reactions, and also by supporting passengers during disruptions through the provision of route advice. This research is combined with a study on passenger behavior based on the new data sources. The models are evaluated using data and case studies of the passenger rail network of Netherlands Railways and the urban rail network of the Massachusetts Bay Transportation Authority. It was found that indeed this new information, together with the option to provide route advice to passengers, could significantly improve service during major disruptions

    Intelligent real-time train rescheduling management for railway system

    Get PDF
    The issue of managing a large and complex railway system with continuous traffic flows and mixed train services in a safe and punctual manner is very important, especially after disruptive events. In the first part of this thesis an analysis method is introduced which allows the visualisation and measurement of the propagation of delays in the railway network. The BRaVE simulator and the University of Birmingham Single Train Simulator (STS) are also introduced and a train running estimation using STS is described. A practical single junction rescheduling problem is then defined and it investigates how different levels of delays and numbers of constraints may affect the performance of algorithms for network-wide rescheduling in terms of quality of solution and computation time. In order to deal with operational dynamics, a methodology using performance-based supervisory control is proposed to provide rescheduling decisions over a wider area through the application of different rescheduling strategies in appropriate sequences. Finally, an architecture for a real-time train rescheduling framework, based on the distributed artificial intelligence system, is designed in order to handle railway traffic in a large-scale network intelligently. A case study based on part of the East Coast Main Line is followed up to demonstrate the effectiveness of adopting supervisory control to provide the rescheduling options in the dynamic situation
    • …
    corecore