3 research outputs found

    K-branching UIO sequences for partially specified observable non-deterministic FSMs

    Get PDF
    In black-box testing, test sequences may be constructed from systems modelled as deterministic finite-state machines (DFSMs) or, more generally, observable non-deterministic finite state machines (ONFSMs). Test sequences usually contain state identification sequences, with unique input output sequences (UIOs) often being used with DFSMs. This paper extends the notion of UIOs to ONFSMs. One challenge is that, as a result of non-determinism, the application of an input sequence can lead to exponentially many expected output sequences. To address this scalability problem, we introduce K-UIOs: K-UIOs that lead to at most K output sequences from states of M. We show that checking K-UIO existence is PSPACE-Complete if the problem is suitably bounded; otherwise it is in EXPSPACE and PSPACE-Hard. We provide a massively parallel algorithm for constructing K-UIOs and the results of experiments on randomly generated and real FSM specifications. The proposed algorithm was able to construct UIOs in cases where the existing UIO generation algorithm could not and was able to construct UIOs from FSMs with 38K states and 400K transitions

    Complete Model-Based Testing Applied to the Railway Domain

    Get PDF
    Testing is the most important verification technique to assert the correctness of an embedded system. Model-based testing (MBT) is a popular approach that generates test cases from models automatically. For the verification of safety-critical systems, complete MBT strategies are most promising. Complete testing strategies can guarantee that all errors of a certain kind are revealed by the generated test suite, given that the system-under-test fulfils several hypotheses. This work presents a complete testing strategy which is based on equivalence class abstraction. Using this approach, reactive systems, with a potentially infinite input domain but finitely many internal states, can be abstracted to finite-state machines. This allows for the generation of finite test suites providing completeness. However, for a system-under-test, it is hard to prove the validity of the hypotheses which justify the completeness of the applied testing strategy. Therefore, we experimentally evaluate the fault-detection capabilities of our equivalence class testing strategy in this work. We use a novel mutation-analysis strategy which introduces artificial errors to a SystemC model to mimic typical HW/SW integration errors. We provide experimental results that show the adequacy of our approach considering case studies from the railway domain (i.e., a speed-monitoring function and an interlocking-system controller) and from the automotive domain (i.e., an airbag controller). Furthermore, we present extensions to the equivalence class testing strategy. We show that a combination with randomisation and boundary-value selection is able to significantly increase the probability to detect HW/SW integration errors
    corecore