3,646 research outputs found

    User-centric Adaptation Analysis of Multi-tenant Services

    Get PDF
    Multi-tenancy is a key pillar of cloud services. It allows different users to share computing and virtual resources transparently, meanwhile guaranteeing substantial cost savings. Due to the tradeoff between scalability and customization, one of the major drawbacks of multi-tenancy is limited configurability. Since users may often have conflicting configuration preferences, offering the best user experience is an open challenge for service providers. In addition, the users, their preferences, and the operational environment may change during the service operation, thus jeopardizing the satisfaction of user preferences. In this article, we present an approach to support user-centric adaptation of multi-tenant services. We describe how to engineer the activities of the Monitoring, Analysis, Planning, Execution (MAPE) loop to support user-centric adaptation, and we focus on adaptation analysis. Our analysis computes a service configuration that optimizes user satisfaction, complies with infrastructural constraints, and minimizes reconfiguration obtrusiveness when user- or service-related changes take place. To support our analysis, we model multitenant services and user preferences by using feature and preference models, respectively. We illustrate our approach by utilizing different cases of virtual desktops. Our results demonstrate the effectiveness of the analysis in improving user preferences satisfaction in negligible time.Ministerio de Economía y Competitividad TIN2012-32273Junta de Andalucía P12--TIC--1867Junta de Andalucía TIC-590

    Orthogonal variability modeling to support multi-cloud application configuration

    Get PDF
    Cloud service providers benefit from a vast majority of customers due to variability and making profit from commonalities between the cloud services that they provide. Recently, application configuration dimensions has been increased dramatically due to multi-tenant, multi-device and multi-cloud paradigm. This challenges the configuration and customization of cloud-based software that are typically offered as a service due to the intrinsic variability. In this paper, we present a model-driven approach based on variability models originating from the software product line community to handle such multi-dimensional variability in the cloud. We exploit orthogonal variability models to systematically manage and create tenant-specific configuration and customizations. We also demonstrate how such variability models can be utilized to take into account the already deployed application parts to enable harmonized deployments for new tenants in a multi-cloud setting. The approach considers application functional and non-functional requirements to provide a set of valid multi-cloud configurations. We illustrate our approach through a case study

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Cloud migration of legacy applications

    Get PDF
    corecore