4,110 research outputs found

    Bethe Projections for Non-Local Inference

    Full text link
    Many inference problems in structured prediction are naturally solved by augmenting a tractable dependency structure with complex, non-local auxiliary objectives. This includes the mean field family of variational inference algorithms, soft- or hard-constrained inference using Lagrangian relaxation or linear programming, collective graphical models, and forms of semi-supervised learning such as posterior regularization. We present a method to discriminatively learn broad families of inference objectives, capturing powerful non-local statistics of the latent variables, while maintaining tractable and provably fast inference using non-Euclidean projected gradient descent with a distance-generating function given by the Bethe entropy. We demonstrate the performance and flexibility of our method by (1) extracting structured citations from research papers by learning soft global constraints, (2) achieving state-of-the-art results on a widely-used handwriting recognition task using a novel learned non-convex inference procedure, and (3) providing a fast and highly scalable algorithm for the challenging problem of inference in a collective graphical model applied to bird migration.Comment: minor bug fix to appendix. appeared in UAI 201

    Generative Adversarial Networks for Mitigating Biases in Machine Learning Systems

    Full text link
    In this paper, we propose a new framework for mitigating biases in machine learning systems. The problem of the existing mitigation approaches is that they are model-oriented in the sense that they focus on tuning the training algorithms to produce fair results, while overlooking the fact that the training data can itself be the main reason for biased outcomes. Technically speaking, two essential limitations can be found in such model-based approaches: 1) the mitigation cannot be achieved without degrading the accuracy of the machine learning models, and 2) when the data used for training are largely biased, the training time automatically increases so as to find suitable learning parameters that help produce fair results. To address these shortcomings, we propose in this work a new framework that can largely mitigate the biases and discriminations in machine learning systems while at the same time enhancing the prediction accuracy of these systems. The proposed framework is based on conditional Generative Adversarial Networks (cGANs), which are used to generate new synthetic fair data with selective properties from the original data. We also propose a framework for analyzing data biases, which is important for understanding the amount and type of data that need to be synthetically sampled and labeled for each population group. Experimental results show that the proposed solution can efficiently mitigate different types of biases, while at the same time enhancing the prediction accuracy of the underlying machine learning model

    Asset Allocation under the Basel Accord Risk Measures

    Full text link
    Financial institutions are currently required to meet more stringent capital requirements than they were before the recent financial crisis; in particular, the capital requirement for a large bank's trading book under the Basel 2.5 Accord more than doubles that under the Basel II Accord. The significant increase in capital requirements renders it necessary for banks to take into account the constraint of capital requirement when they make asset allocation decisions. In this paper, we propose a new asset allocation model that incorporates the regulatory capital requirements under both the Basel 2.5 Accord, which is currently in effect, and the Basel III Accord, which was recently proposed and is currently under discussion. We propose an unified algorithm based on the alternating direction augmented Lagrangian method to solve the model; we also establish the first-order optimality of the limit points of the sequence generated by the algorithm under some mild conditions. The algorithm is simple and easy to implement; each step of the algorithm consists of solving convex quadratic programming or one-dimensional subproblems. Numerical experiments on simulated and real market data show that the algorithm compares favorably with other existing methods, especially in cases in which the model is non-convex
    corecore