86,665 research outputs found

    Ambient Isotopic Meshing of Implicit Algebraic Surface with Singularities

    Full text link
    A complete method is proposed to compute a certified, or ambient isotopic, meshing for an implicit algebraic surface with singularities. By certified, we mean a meshing with correct topology and any given geometric precision. We propose a symbolic-numeric method to compute a certified meshing for the surface inside a box containing singularities and use a modified Plantinga-Vegter marching cube method to compute a certified meshing for the surface inside a box without singularities. Nontrivial examples are given to show the effectiveness of the algorithm. To our knowledge, this is the first method to compute a certified meshing for surfaces with singularities.Comment: 34 pages, 17 Postscript figure

    Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua

    Full text link
    We develop a combinatorial approach to the construction of general smooth compact base surfaces that support elliptic Calabi-Yau threefolds. This extends previous analyses that have relied on toric or semi-toric structure. The resulting algorithm is used to construct all classes of such base surfaces SS with h1,1(S)<8h^{1, 1} (S) < 8 and all base surfaces over which there is an elliptically fibered Calabi-Yau threefold XX with Hodge number h2,1(X)150h^{2, 1} (X) \geq 150. These two sets can be used todescribe all 6D F-theory models that have fewer than seven tensor multiplets or more than 150 neutral scalar fields respectively in their maximally Higgsed phase. Technical challenges to constructing the complete list of base surfaces for all Hodge numbers are discussed.Comment: 51 pages, 10 figure

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Extraction of cylinders and cones from minimal point sets

    Get PDF
    We propose new algebraic methods for extracting cylinders and cones from minimal point sets, including oriented points. More precisely, we are interested in computing efficiently cylinders through a set of three points, one of them being oriented, or through a set of five simple points. We are also interested in computing efficiently cones through a set of two oriented points, through a set of four points, one of them being oriented, or through a set of six points. For these different interpolation problems, we give optimal bounds on the number of solutions. Moreover, we describe algebraic methods targeted to solve these problems efficiently
    corecore