24,330 research outputs found

    A Conceptual Quality Framework for Volunteered Geographic Information

    Full text link
    The assessment of the quality of volunteered geographic information (VGI) is cornerstone to understand the fitness for purpose of datasets in many application domains. While most analyses focus on geometric and positional quality, only sporadic attention has been devoted to the interpretation of the data, i.e., the communication process through which consumers try to reconstruct the meaning of information intended by its producers. Interpretability is a notoriously ephemeral, culturally rooted, and context-dependent property of the data that concerns the conceptual quality of the vocabularies, schemas, ontologies, and documentation used to describe and annotate the geographic features of interest. To operationalize conceptual quality in VGI, we propose a multi-faceted framework that includes accuracy, granularity, completeness, consistency, compliance, and richness, proposing proxy measures for each dimension. The application of the framework is illustrated in a case study on a European sample of OpenStreetMap, focused specifically on conceptual compliance

    Analyzing the Tagging Quality of the Spanish OpenStreetMap

    Get PDF
    In this paper, a framework for the assessment of the quality of OpenStreetMap is presented, comprising a batch of methods to analyze the quality of entity tagging. The approach uses Taginfo as a reference base and analyses quality measures such as completeness, compliance, consistence, granularity, richness and trust . The framework has been used to analyze the quality of OpenStreetMap in Spain, comparing the main cities of Spain. Also a comparison between Spain and some major European cities has been carried out. Additionally, a Web tool has been also developed in order to facilitate the same kind of analysis in any area of the world

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    The role of volunteered geographic information in land administration systems in developing countries

    Get PDF
    PhD ThesisDeveloping countries, especially in Africa are faced with a lack of formally registered land. Available limited records are outdated, inaccurate and unreliable, which makes it a challenge to properly administer and manage land and its resources. Moreover, limited maintenance budgets prevalent in these countries make it difficult for organizations to conduct regular systematic updates of geographic information. Despite these challenges, geographic information still forms a major component for effective land administration. For a land administration system (LAS) to remain useful, it must reflect realities on the ground, and this can only be achieved if land information is reported regularly. However, if changes in land are not captured in properly administered land registers, LAS lose societal relevance and are eventually replaced by informal systems. Volunteered Geographic Information (VGI) can address these LAS challenges by providing timely, affordable, up-to-date, flexible, and fit for purpose (FFP) land information to support the limited current systems. Nonetheless, the involvement of volunteers, who in most cases are untrained or non-experts in handling geographic information, implies that VGI can be of varying quality. Thus, VGI is characterised by unstructured, heterogeneous, unreliable data which makes data integration for value-added purposes difficult to effect. These quality challenges can make land authorities reluctant to incorporate the contributed datasets into their official databases. This research has developed an innovative approach for establishing the quality and credibility of VGI such that it can be considered in LAS on an FFP basis. However, verifying volunteer efforts can be difficult without reference to ground truth, which is prevalent in many developing countries. Therefore, a novel Trust and Reputation Modelling (TRM) methodology is proposed as a suitable technique to effect such VGI validation. TRM relies on a view that the public can police themselves in establishing ‘proxy’ measures of VGI quality and credibility of volunteers, thus facilitating VGI to be used on an FFP basis in LAS. The output of this research is a conceptual participatory framework for an FFP land administration based on VGI. The framework outlines major aspects (social, legal, technical, and institutional) necessary for establishing a participatory FFP LAS in developing countries.University of Botswan

    Integrating Spatial Data Infrastructures (SDIs) with Volunteered Geographic Information (VGI) creating a Global GIS platform

    Get PDF
    Spatial Data Infrastructures (SDIs) are a special category of data hubs that involve technological and human resources and follow well defined legal and technical procedures to collect, store, manage and distribute spatial data. INSPIRE is the EU’s authoritative SDI in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy-making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information (GI) where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI, as well as advantages and disadvantages to both. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision-making. This idea of integration is in its early stages, because several key issues need to be considered and resolved first. Therefore, this chapter discusses the challenges of integrating VGI with INSPIRE and outlines a generic framework for a global integrated GIS platform, similar in concept to Digital Earth and Virtual Geographic Environments (VGEs), as a realistic scenario for advancements in the short term

    Enhancing Data Classification Quality of Volunteered Geographic Information

    Get PDF
    Geographic data is one of the fundamental components of any Geographic Information System (GIS). Nowadays, the utility of GIS becomes part of everyday life activities, such as searching for a destination, planning a trip, looking for weather information, etc. Without a reliable data source, systems will not provide guaranteed services. In the past, geographic data was collected and processed exclusively by experts and professionals. However, the ubiquity of advanced technology results in the evolution of Volunteered Geographic Information (VGI), when the geographic data is collected and produced by the general public. These changes influence the availability of geographic data, when common people can work together to collect geographic data and produce maps. This particular trend is known as collaborative mapping. In collaborative mapping, the general public shares an online platform to collect, manipulate, and update information about geographic features. OpenStreetMap (OSM) is a prominent example of a collaborative mapping project, which aims to produce a free world map editable and accessible by anyone. During the last decade, VGI has expanded based on the power of crowdsourcing. The involvement of the public in data collection raises great concern about the resulting data quality. There exist various perspectives of geographic data quality this dissertation focuses particularly on the quality of data classification (i.e., thematic accuracy). In professional data collection, data is classified based on quantitative and/or qualitative ob- servations. According to a pre-defined classification model, which is usually constructed by experts, data is assigned to appropriate classes. In contrast, in most collaborative mapping projects data classification is mainly based on individualsa cognition. Through online platforms, contributors collect information about geographic features and trans- form their perceptions into classified entities. In VGI projects, the contributors mostly have limited experience in geography and cartography. Therefore, the acquired data may have a questionable classification quality. This dissertation investigates the challenges of data classification in VGI-based mapping projects (i.e., collaborative mapping projects). In particular, it lists the challenges relevant to the evolution of VGI as well as to the characteristics of geographic data. Furthermore, this work proposes a guiding approach to enhance the data classification quality in such projects. The proposed approach is based on the following premises (i) the availability of large amounts of data, which fosters applying machine learning techniques to extract useful knowledge, (ii) utilization of the extracted knowledge to guide contributors to appropriate data classification, (iii) the humanitarian spirit of contributors to provide precise data, when they are supported by a guidance system, and (iv) the power of crowdsourcing in data collection as well as in ensuring the data quality. This cumulative dissertation consists of five peer-reviewed publications in international conference proceedings and international journals. The publications divide the disser- tation into three parts the first part presents a comprehensive literature review about the relevant previous work of VGI quality assurance procedures (Chapter 2), the second part studies the foundations of the approach (Chapters 3-4), and the third part discusses the proposed approach and provides a validation example for implementing the approach (Chapters 5-6). Furthermore, Chapter 1 presents an overview about the research ques- tions and the adapted research methodology, while Chapter 7 concludes the findings and summarizes the contributions. The proposed approach is validated through empirical studies and an implemented web application. The findings reveal the feasibility of the proposed approach. The output shows that applying the proposed approach results in enhanced data classification quality. Furthermore, the research highlights the demands for intuitive data collection and data interpretation approaches adequate to VGI-based mapping projects. An interaction data collection approach is required to guide the contributors toward enhanced data quality, while an intuitive data interpretation approach is needed to derive more precise information from rich VGI resources
    • 

    corecore