628 research outputs found

    Enhancing Data Classification Quality of Volunteered Geographic Information

    Get PDF
    Geographic data is one of the fundamental components of any Geographic Information System (GIS). Nowadays, the utility of GIS becomes part of everyday life activities, such as searching for a destination, planning a trip, looking for weather information, etc. Without a reliable data source, systems will not provide guaranteed services. In the past, geographic data was collected and processed exclusively by experts and professionals. However, the ubiquity of advanced technology results in the evolution of Volunteered Geographic Information (VGI), when the geographic data is collected and produced by the general public. These changes influence the availability of geographic data, when common people can work together to collect geographic data and produce maps. This particular trend is known as collaborative mapping. In collaborative mapping, the general public shares an online platform to collect, manipulate, and update information about geographic features. OpenStreetMap (OSM) is a prominent example of a collaborative mapping project, which aims to produce a free world map editable and accessible by anyone. During the last decade, VGI has expanded based on the power of crowdsourcing. The involvement of the public in data collection raises great concern about the resulting data quality. There exist various perspectives of geographic data quality this dissertation focuses particularly on the quality of data classification (i.e., thematic accuracy). In professional data collection, data is classified based on quantitative and/or qualitative ob- servations. According to a pre-defined classification model, which is usually constructed by experts, data is assigned to appropriate classes. In contrast, in most collaborative mapping projects data classification is mainly based on individualsa cognition. Through online platforms, contributors collect information about geographic features and trans- form their perceptions into classified entities. In VGI projects, the contributors mostly have limited experience in geography and cartography. Therefore, the acquired data may have a questionable classification quality. This dissertation investigates the challenges of data classification in VGI-based mapping projects (i.e., collaborative mapping projects). In particular, it lists the challenges relevant to the evolution of VGI as well as to the characteristics of geographic data. Furthermore, this work proposes a guiding approach to enhance the data classification quality in such projects. The proposed approach is based on the following premises (i) the availability of large amounts of data, which fosters applying machine learning techniques to extract useful knowledge, (ii) utilization of the extracted knowledge to guide contributors to appropriate data classification, (iii) the humanitarian spirit of contributors to provide precise data, when they are supported by a guidance system, and (iv) the power of crowdsourcing in data collection as well as in ensuring the data quality. This cumulative dissertation consists of five peer-reviewed publications in international conference proceedings and international journals. The publications divide the disser- tation into three parts the first part presents a comprehensive literature review about the relevant previous work of VGI quality assurance procedures (Chapter 2), the second part studies the foundations of the approach (Chapters 3-4), and the third part discusses the proposed approach and provides a validation example for implementing the approach (Chapters 5-6). Furthermore, Chapter 1 presents an overview about the research ques- tions and the adapted research methodology, while Chapter 7 concludes the findings and summarizes the contributions. The proposed approach is validated through empirical studies and an implemented web application. The findings reveal the feasibility of the proposed approach. The output shows that applying the proposed approach results in enhanced data classification quality. Furthermore, the research highlights the demands for intuitive data collection and data interpretation approaches adequate to VGI-based mapping projects. An interaction data collection approach is required to guide the contributors toward enhanced data quality, while an intuitive data interpretation approach is needed to derive more precise information from rich VGI resources

    Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning

    Get PDF
    Urban systems involve a multitude of closely intertwined components, which are more measurable than before due to new sensors, data collection, and spatio-temporal analysis methods. Turning these data into knowledge to facilitate planning efforts in addressing current challenges of urban complex systems requires advanced interdisciplinary analysis methods, such as urban informatics or urban data science. Yet, by applying a purely data-driven approach, it is too easy to get lost in the ‘forest’ of data, and to miss the ‘trees’ of successful, livable cities that are the ultimate aim of urban planning. This paper assesses how geospatial data, and urban analysis, using a mixed methods approach, can help to better understand urban dynamics and human behavior, and how it can assist planning efforts to improve livability. Based on reviewing state-of-the-art research the paper goes one step further and also addresses the potential as well as limitations of new data sources in urban analytics to get a better overview of the whole ‘forest’ of these new data sources and analysis methods. The main discussion revolves around the reliability of using big data from social media platforms or sensors, and how information can be extracted from massive amounts of data through novel analysis methods, such as machine learning, for better-informed decision making aiming at urban livability improvement

    Open source data mining infrastructure for exploring and analysing OpenStreetMap

    Get PDF
    OpenStreetMap and other Volunteered Geographic Information datasets have been explored in the last years, with the aim of understanding how their meaning is rendered, of assessing their quality, and of understanding the community-driven process that creates and maintains the data. Research mostly focuses either on the data themselves while ignoring the social processes behind, or solely discusses the community-driven process without making sense of the data at a larger scale. A holistic understanding that takes these and other aspects into account is, however, seldom gained. This article describes a server infrastructure to collect and process data about different aspects of OpenStreetMap. The resulting data are offered publicly in a common container format, which fosters the simultaneous examination of different aspects with the aim of gaining a more holistic view and facilitates the results’ reproducibility. As an example of such uses, we discuss the project OSMvis. This project offers a number of visualizations, which use the datasets produced by the server infrastructure to explore and visually analyse different aspects of OpenStreetMap. While the server infrastructure can serve as a blueprint for similar endeavours, the created datasets are of interest themselves too

    Human mobility, cognition and GISc:Conference proceedings

    Get PDF

    Highlighting Current Trends in Volunteered Geographic Information

    Get PDF
    Volunteered Geographic Information (VGI) is a growing area of research. This Special Issue aims to capture the main trends in VGI research based on 16 original papers, and distinguishes between two main areas, i.e., those that deal with the characteristics of VGI and those focused on applications of VGI. The topic of quality assessment and assurance dominates the papers on VGI characteristics, whereas application-oriented work covers three main domains: human behavioral analysis, natural disasters, and land cover/land use mapping. In this Special Issue, therefore, both the challenges and the potentials of VGI are addressed

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    Recent Developments and Future Trends in Volunteered Geographic Information Research: The Case of OpenStreetMap

    Get PDF
    User-generated content (UGC) platforms on the Internet have experienced a steep increase in data contributions in recent years. The ubiquitous usage of location-enabled devices, such as smartphones, allows contributors to share their geographic information on a number of selected online portals. The collected information is oftentimes referred to as volunteered geographic information (VGI). One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM), whose main goal it is to create a freely available geographic database of the world. This paper presents a comprehensive overview of the latest developments in VGI research, focusing on its collaboratively collected geodata and corresponding contributor patterns. Additionally, trends in the realm of OSM research are discussed, highlighting which aspects need to be investigated more closely in the near future

    Improving knowledge about the risks of inappropriate uses of geospatial data by introducing a collaborative approach in the design of geospatial databases

    Get PDF
    La disponibilité accrue de l’information géospatiale est, de nos jours, une réalité que plusieurs organisations, et même le grand public, tentent de rentabiliser; la possibilité de réutilisation des jeux de données est désormais une alternative envisageable par les organisations compte tenu des économies de coûts qui en résulteraient. La qualité de données de ces jeux de données peut être variable et discutable selon le contexte d’utilisation. L’enjeu d’inadéquation à l’utilisation de ces données devient d’autant plus important lorsqu’il y a disparité entre les nombreuses expertises des utilisateurs finaux de la donnée géospatiale. La gestion des risques d’usages inappropriés de l’information géospatiale a fait l’objet de plusieurs recherches au cours des quinze dernières années. Dans ce contexte, plusieurs approches ont été proposées pour traiter ces risques : parmi ces approches, certaines sont préventives et d’autres sont plutôt palliatives et gèrent le risque après l'occurrence de ses conséquences; néanmoins, ces approches sont souvent basées sur des initiatives ad-hoc non systémiques. Ainsi, pendant le processus de conception de la base de données géospatiale, l’analyse de risque n’est pas toujours effectuée conformément aux principes d’ingénierie des exigences (Requirements Engineering) ni aux orientations et recommandations des normes et standards ISO. Dans cette thèse, nous émettons l'hypothèse qu’il est possible de définir une nouvelle approche préventive pour l’identification et l’analyse des risques liés à des usages inappropriés de la donnée géospatiale. Nous pensons que l’expertise et la connaissance détenues par les experts (i.e. experts en geoTI), ainsi que par les utilisateurs professionnels de la donnée géospatiale dans le cadre institutionnel de leurs fonctions (i.e. experts du domaine d'application), constituent un élément clé dans l’évaluation des risques liés aux usages inadéquats de ladite donnée, d’où l’importance d’enrichir cette connaissance. Ainsi, nous passons en revue le processus de conception des bases de données géospatiales et proposons une approche collaborative d’analyse des exigences axée sur l’utilisateur. Dans le cadre de cette approche, l’utilisateur expert et professionnel est impliqué dans un processus collaboratif favorisant l’identification a priori des cas d’usages inappropriés. Ensuite, en passant en revue la recherche en analyse de risques, nous proposons une intégration systémique du processus d’analyse de risque au processus de la conception de bases de données géospatiales et ce, via la technique Delphi. Finalement, toujours dans le cadre d’une approche collaborative, un référentiel ontologique de risque est proposé pour enrichir les connaissances sur les risques et pour diffuser cette connaissance aux concepteurs et utilisateurs finaux. L’approche est implantée sous une plateforme web pour mettre en œuvre les concepts et montrer sa faisabilité.Nowadays, the increased availability of geospatial information is a reality that many organizations, and even the general public, are trying to transform to a financial benefit. The reusability of datasets is now a viable alternative that may help organizations to achieve cost savings. The quality of these datasets may vary depending on the usage context. The issue of geospatial data misuse becomes even more important because of the disparity between the different expertises of the geospatial data end-users. Managing the risks of geospatial data misuse has been the subject of several studies over the past fifteen years. In this context, several approaches have been proposed to address these risks, namely preventive approaches and palliative approaches. However, these approaches are often based on ad-hoc initiatives. Thus, during the design process of the geospatial database, risk analysis is not always carried out in accordance neither with the principles/guidelines of requirements engineering nor with the recommendations of ISO standards. In this thesis, we suppose that it is possible to define a preventive approach for the identification and analysis of risks associated to inappropriate use of geospatial data. We believe that the expertise and knowledge held by experts and users of geospatial data are key elements for the assessment of risks of geospatial data misuse of this data. Hence, it becomes important to enrich that knowledge. Thus, we review the geospatial data design process and propose a collaborative and user-centric approach for requirements analysis. Under this approach, the user is involved in a collaborative process that helps provide an a priori identification of inappropriate use of the underlying data. Then, by reviewing research in the domain of risk analysis, we propose to systematically integrate risk analysis – using the Delphi technique – through the design of geospatial databases. Finally, still in the context of a collaborative approach, an ontological risk repository is proposed to enrich the knowledge about the risks of data misuse and to disseminate this knowledge to the design team, developers and end-users. The approach is then implemented using a web platform in order to demonstrate its feasibility and to get the concepts working within a concrete prototype

    Data trustworthiness and user reputation as indicators of VGI quality

    Get PDF
    ABSTRACTVolunteered geographic information (VGI) has entered a phase where there are both a substantial amount of crowdsourced information available and a big interest in using it by organizations. But the issue of deciding the quality of VGI without resorting to a comparison with authoritative data remains an open challenge. This article first formulates the problem of quality assessment of VGI data. Then presents a model to measure trustworthiness of information and reputation of contributors by analyzing geometric, qualitative, and semantic aspects of edits over time. An implementation of the model is running on a small data-set for a preliminary empirical validation. The results indicate that the computed trustworthiness provides a valid approximation of VGI quality
    • …
    corecore