40,040 research outputs found

    Sustainable and traditional product innovation without scale and experience, but only for KIBS!

    Get PDF
    This study analyzes the ideal strategic trajectory for sustainable and traditional product innovation. Using a sample of 74 Costa Rican high-performance businesses for 2016, we employ fuzzy set analysis (qualitative comparative analysis) to evaluate how the development of sustainable and traditional product innovation strategies is conditioned by the business’ learning capabilities and entrepreneurial orientation in knowledge-intensive (KIBS) and non-knowledge-intensive businesses. The results indicate two ideal strategic configurations of product innovation. The first strategic configuration to reach maximum product innovation requires the presence of KIBS firms that have both an entrepreneurial and learning orientation, while the second configuration is specific to non-KIBS firms with greater firm size and age along with entrepreneurial and learning orientation. KIBS firms are found to leverage the knowledge-based and customer orientations that characterize their business model in order to compensate for the shortage of important organizational characteristics—which we link to liabilities or smallness and newness—required to achieve optimal sustainable and traditional product innovation.Peer ReviewedPostprint (published version

    Application of fuzzy logic in performance management: a literature review

    Full text link
    [EN] Performance management has become in a key success factor for any organization. Traditionally, performance management has focused uniquely in financial measures, mainly using quantitative measures, but two decades ago they were extended towards an integral view of the organization, appearing qualitative measures. This type of extended view and associated measures have a degree of uncertainty that needs to be bounded. One of the essential tools for uncertainty bounding is the fuzzy logic and, therefore,the main objective of this paper is the analysis of the literature about the application of fuzzy logic in performance measurement systems operating within uncertainty environments with the aim of categorizing, conceptualizing and classifying the works written so far. Finally, three categories are defined according to the different uses of fuzzy logic within performance management concluding that the most important application of fuzzy logic that counts with a higher number of studies is uncertainty bounding.Gurrea Montesinos, V.; Alfaro Saiz, JJ.; Rodríguez Rodríguez, R.; Verdecho Såez, MJ. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering. 2(2):93-100. doi:10.4995/ijpme.2014.1859SWORD9310022Amini, S., & Jochem, R. (2011). A Conceptual Model Based on the Fuzzy Set Theory to Measure and Evaluate the Performance of Service Processes. 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops. doi:10.1109/edocw.2011.25Ammar, S. & Wright, R. (1995), "A Fuzzy Logic Approach to Performance Evaluation". Uncertainty Modeling and Analysis, 1995, and Annual Conference of the North American Fuzzy Information Processing Society. Proceedings of ISUMA - NAFIPS '95., pp. 246 - 251Ammar, S., & Wright, R. (2000). Applying fuzzy-set theory to performance evaluation. Socio-Economic Planning Sciences, 34(4), 285-302. doi:10.1016/s0038-0121(00)00004-5Arango, M.D., Jaimes, W.A. & Zapata, J.A. (2010) "Gestion cadena de abastecimiento - Logistica con indicadores bajo incertidumbre, caso aplicado sector panificador palmira" Ciencia e Ingeniería Neogranadina, Vol. 20-1, pp. 97-115.Beheshti, H. M., & Lollar, J. G. (2008). Fuzzy logic and performance evaluation: discussion and application. International Journal of Productivity and Performance Management, 57(3), 237-246. doi:10.1108/17410400810857248Behrouzi, F., & Wong, K. Y. (2011). Lean performance evaluation of manufacturing systems: A dynamic and innovative approach. Procedia Computer Science, 3, 388-395. doi:10.1016/j.procs.2010.12.065Chan, T.S., Ql, H.J. (2003), "An innovative performance measurement method for supply chain management". Sup-ply Chain Management: An International Journal Volume 8 Number 3, pp. 209-223.Chan, F. T. S., Qi, H. J., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). A conceptual model of performance measurement for supply chains. Management Decision, 41(7), 635-642. doi:10.1108/00251740310495568Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289-301. doi:10.1016/j.ijpe.2005.03.009Cheng, S., Hsu, B., & Shu, M. (2007). Fuzzy testing and selecting better processes performance. Industrial Management & Data Systems, 107(6), 862-881. doi:10.1108/02635570710758761Ferreira, A., Azevedo,S. &Fazendeiro, P. (2012) "A Linguistic Approach to Supply Chain Performance Assessment". IEEE International Conference on Fuzzy Sistems, pp.1-5.Lau, H. C. W., Kai Pang, W., & Wong, C. W. Y. (2002). Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15(4), 271-280. doi:10.1108/09576050210436110Lalmazloumian M. & Yew K., (2012), "A Review of Modelling Approaches for Supply Chain Planning Under Un-certainty". 9th International Conference on Service Systems and Service Management (ICSSSM), pp. 197-203.Liao, M.-Y., & Wu, C.-W. (2010). Evaluating process performance based on the incapability index for measurements with uncertainty. Expert Systems with Applications, 37(8), 5999-6006. doi:10.1016/j.eswa.2010.02.005Lu, C. & Wei li, X. (2006), "Supply Chain Modeling Using Fuzzy Sets and Possibility Theory in an Uncertain Envi-ronment". The Sixth World Congress on Intelligent Control and Automation, Vol.2, pp. 3608-3612.Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers & Industrial Engineering, 56(4), 1535-1544. doi:10.1016/j.cie.2008.09.038Muñoz, M. J., Rivera, J. M., & Moneva, J. M. (2008). Evaluating sustainability in organisations with a fuzzy logic approach. Industrial Management & Data Systems, 108(6), 829-841. doi:10.1108/02635570810884030Olugu, E. U., & Wong, K. Y. (2012). An expert fuzzy rule-based system for closed-loop supply chain performance assessment in the automotive industry. Expert Systems with Applications, 39(1), 375-384. doi:10.1016/j.eswa.2011.07.026Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32(2), 295-307. doi:10.1016/j.jmsy.2012.12.001Theeranuphattana, A., & Tang, J. C. S. (2007). A conceptual model of performance measurement for supply chains. Journal of Manufacturing Technology Management, 19(1), 125-148. doi:10.1108/17410380810843480Unahabhokha, C., Platts, K., & Hua Tan, K. (2007). Predictive performance measurement system. Benchmarking: An International Journal, 14(1), 77-91. doi:10.1108/14635770710730946Van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409-430. doi:10.1108/09600030210437951Wei, C., Liou, T., & Lee, K. (2008). An ERP performance measurement framework using a fuzzy integral approach. Journal of Manufacturing Technology Management, 19(5), 607-626. doi:10.1108/17410380810877285Xu Xiao Xia, L., Ma, B. & Lim, R. (2008) "Supplier Performance Measurement in a Supply Chain". 6th IEEE Inter-national Conference on Industrial Informatics, pp. 877-881

    Resilience Assignment Framework using System Dynamics and Fuzzy Logic.

    Get PDF
    This paper is concerned with the development of a conceptual framework that measures the resilience of the transport network under climate change related events. However, the conceptual framework could be adapted and quantified to suit each disruption’s unique impacts. The proposed resilience framework evaluates the changes in transport network performance in multi-stage processes; pre, during and after the disruption. The framework will be of use to decision makers in understanding the dynamic nature of resilience under various events. Furthermore, it could be used as an evaluation tool to gauge transport network performance and highlight weaknesses in the network. In this paper, the system dynamics approach and fuzzy logic theory are integrated and employed to study three characteristics of network resilience. The proposed methodology has been selected to overcome two dominant problems in transport modelling, namely complexity and uncertainty. The system dynamics approach is intended to overcome the double counting effect of extreme events on various resilience characteristics because of its ability to model the feedback process and time delay. On the other hand, fuzzy logic is used to model the relationships among different variables that are difficult to express in numerical form such as redundancy and mobility

    Fuzzy subjective evaluation of Asia Pacific airport services

    Get PDF
    This paper presents a fuzzy decision-making model to determine the ranking of fourteen Asia Pacific airports based on the services provided to passengers. Airport services were represented by six attributes namely comfort, processing time, convenience, courtesy of staff, information visibility and security. Data for the attributes given by travel experts are in the triangular fuzzy number form. Based on fuzzy set and approximate reasoning, the model allows decision makers to make the best choice in accordance with human thinking and reasoning processes.The use of fuzzy rules which are extracted directly from the input data in making evaluation, contributes to a better decision and is less dependent on experts.Experimental results show that the proposed model is comparable to previous studies.The model is suitable for various fuzzy environments

    A metric to represent the evolution of CAD/analysis models in collaborative design

    Get PDF
    Computer Aided Design (CAD) and Computer Aided Engineering (CAE) models are often used during product design. Various interactions between the different models must be managed for the designed system to be robust and in accordance with initially defined specifications. Research published to date has for example considered the link between digital mock-up and analysis models. However design/analysis integration must take into consideration the important number of models (digital mock-up and simulation) due to model evolution in time, as well as considering system engineering. To effectively manage modifications made to the system, the dependencies between the different models must be known and the nature of the modification must be characterised to estimate the impact of the modification throughout the dependent models. We propose a technique to describe the nature of a modification which may be used to determine the consequence within other models as well as a way to qualify the modified information. To achieve this, a metric is proposed that allows the qualification and evaluation of data or information, based on the maturity and validity of information and model

    Building an Expert System for Evaluation of Commercial Cloud Services

    Full text link
    Commercial Cloud services have been increasingly supplied to customers in industry. To facilitate customers' decision makings like cost-benefit analysis or Cloud provider selection, evaluation of those Cloud services are becoming more and more crucial. However, compared with evaluation of traditional computing systems, more challenges will inevitably appear when evaluating rapidly-changing and user-uncontrollable commercial Cloud services. This paper proposes an expert system for Cloud evaluation that addresses emerging evaluation challenges in the context of Cloud Computing. Based on the knowledge and data accumulated by exploring the existing evaluation work, this expert system has been conceptually validated to be able to give suggestions and guidelines for implementing new evaluation experiments. As such, users can conveniently obtain evaluation experiences by using this expert system, which is essentially able to make existing efforts in Cloud services evaluation reusable and sustainable.Comment: 8 page, Proceedings of the 2012 International Conference on Cloud and Service Computing (CSC 2012), pp. 168-175, Shanghai, China, November 22-24, 201
    • 

    corecore