492 research outputs found

    A conceptual exoskeleton shoulder design for the assistance of upper limb movement

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. There is an increased interest on wearable technologies for rehabilitation and human augmentation. Systems focusing on the upper limbs are attempting to replicate the musculoskeletal structures found in humans, reproducing existing behaviors and capabilities. The current work is expanding on existing systems with a novel design that ensures the maximum range of motion while at the same time allowing for lockable features ensuring higher manipulation payloads at minimum energy and fatigue costs. An analysis of the biomechanics of the shoulder is being done and a detailed system design for structural as well actuation elements of a parallel mechanism is given. The benefits for the use are discussed of reduced weight, maximum range of motion at minimum energy cost

    User-Centered Modelling and Design of Assistive Exoskeletons

    Get PDF

    A Bamboo-inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints

    Get PDF

    An Upper Extremity Exoskeleton Utilizing a Modified Double Parallelogram Linkage Mechanism with Proximally Located Actuators

    Get PDF
    The shoulder joint is an extremely complex joint, with a wide range of motion (ROM), which makes designing an upper extremity exoskeleton a complicated task. This thesis presents a 3-degree-of-freedom (DOF) exoskeleton with a modified double parallelogram mechanism (DPM) that fits any wearer independent of their biological frame. The DPM is remarkably useful in wearable robotics. The mechanism creates a remote center of rotation about the shoulder joint while remaining unobtrusive and not colliding with the wearer’s body. Its fixed link lengths, however, requires it to be specially fitted to each individual user. This is inconvenient for most exoskeletons that utilize a DPM, since wearers often vary in body shape, size, and build. By connecting the two parallelograms with a mediating link and implementing a sliding-pin joint, the proposed modified DPM allows for a much larger ROM than the original design of the mechanism. This allows it to fit onto almost any anthropometric frame. The exoskeleton provides active assistance during flexion/extension while allowing free abduction/adduction and internal/external rotations. The experimental results demonstrate the proposed design’s ability to provide assistance during a wide range of shoulder motions

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF

    A review on design of upper limb exoskeletons

    Get PDF

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    Design Methodology for Rehabilitation Robots: Application in an Exoskeleton for Upper Limb Rehabilitation

    Get PDF
    This article presents a methodology for the design of rehabilitation devices that considers factors involved in a clinical environment. This methodology integrates different disciplines that work together. The methodology is composed by three phases and 13 stages with specific tasks, the first phase includes the clinical context considering the requirements of the patient and therapist during the rehabilitation, the second phase is focused in engineering based on the philosophy of digital twin, and in the third phase is evaluated the device. This article explains the characteristics of the methodology and how it was applied in the design of an exoskeleton for passive rehabilitation of upper limb

    Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients

    Get PDF
    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity- dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed
    • …
    corecore