193 research outputs found

    Dendral-64 - a system for computer construction, enumeration and notation of organic molecules as tree structures and cyclic graphs. part i- notational algorithm for tree structures

    Get PDF
    Computer construction, enumeration, and notation of organic molecules as tree structures and cyclic graph

    Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures.</p> <p>Results</p> <p>In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages.</p> <p>Conclusions</p> <p>Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.</p

    Analysis of Generative Chemistries

    Get PDF
    For the modelling of chemistry we use undirected, labelled graphs as explicit models of molecules and graph transformation rules for modelling generalised chemical reactions. This is used to define artificial chemistries on the level of individual bonds and atoms, where formal graph grammars implicitly represent large spaces of chemical compounds. We use a graph rewriting formalism, rooted in category theory, called the Double Pushout approach, which directly expresses the transition state of chemical reactions. Using concurrency theory for transformation rules, we define algorithms for the composition of rewrite rules in a chemically intuitive manner that enable automatic abstraction of the level of detail in chemical pathways. Based on this rule composition we define an algorithmic framework for generation of vast reaction networks for specific spaces of a given chemistry, while still maintaining the level of detail of the model down to the atomic level. The framework also allows for computation with graphs and graph grammars, which is utilised to model non-trivial chemical systems. The graph generation relies on graph isomorphism testing, and we review the general individualisation-refinement paradigm used in the state-of-the-art algorithms for graph canonicalisation, isomorphism testing, and automorphism discovery. We present a model for chemical pathways based on a generalisation of network flows from ordinary directed graphs to directed hypergraphs. The model allows for reasoning about the flow of individual molecules in general pathways, and the introduction of chemically motivated routing constraints. It further provides the foundation for defining specialised pathway motifs, which is illustrated by defining necessary topological constraints for both catalytic and autocatalytic pathways. We also prove that central types of pathway questions are NP-complete, even for restricted classes of reaction networks. The complete pathway model, including constraints for catalytic and autocatalytic pathways, is implemented using integer linear programming. This implementation is used in a tree search method to enumerate both optimal and near-optimal pathway solutions. The formal methods are applied to multiple chemical systems: the enzyme catalysed beta-lactamase reaction, variations of the glycolysis pathway, and the formose process. In each of these systems we use rule composition to abstract pathways and calculate traces for isotope labelled carbon atoms. The pathway model is used to automatically enumerate alternative non-oxidative glycolysis pathways, and enumerate thousands of candidates for autocatalytic pathways in the formose process

    Introduction to protein folding for physicists

    Get PDF
    The prediction of the three-dimensional native structure of proteins from the knowledge of their amino acid sequence, known as the protein folding problem, is one of the most important yet unsolved issues of modern science. Since the conformational behaviour of flexible molecules is nothing more than a complex physical problem, increasingly more physicists are moving into the study of protein systems, bringing with them powerful mathematical and computational tools, as well as the sharp intuition and deep images inherent to the physics discipline. This work attempts to facilitate the first steps of such a transition. In order to achieve this goal, we provide an exhaustive account of the reasons underlying the protein folding problem enormous relevance and summarize the present-day status of the methods aimed to solving it. We also provide an introduction to the particular structure of these biological heteropolymers, and we physically define the problem stating the assumptions behind this (commonly implicit) definition. Finally, we review the 'special flavor' of statistical mechanics that is typically used to study the astronomically large phase spaces of macromolecules. Throughout the whole work, much material that is found scattered in the literature has been put together here to improve comprehension and to serve as a handy reference.Comment: 53 pages, 18 figures, the figures are at a low resolution due to arXiv restrictions, for high-res figures, go to http://www.pabloechenique.co

    UMSL Bulletin 1987-1988 Description of Courses

    Get PDF
    https://irl.umsl.edu/bulletin/1066/thumbnail.jp

    UMSL Bulletin 1988-1989 Description of Courses

    Get PDF
    https://irl.umsl.edu/bulletin/1065/thumbnail.jp

    UMSL Bulletin 1991-1992 Description of Courses

    Get PDF
    https://irl.umsl.edu/bulletin/1063/thumbnail.jp

    UMSL Bulletin 1990-1991 Description of Courses

    Get PDF
    https://irl.umsl.edu/bulletin/1064/thumbnail.jp
    • …
    corecore