250 research outputs found

    LPC and its derivatives for stuttered speech recognition

    Get PDF
    Stuttering or stammering is disruptions in the normal flow of speech by dysfluencies, which can be repetitions or prolongations of phoneme or syllable. Stuttering cannot be permanently cured, though it may go into remission or stutterers can learn to shape their speech into fluent speech with an appropriate speech pathology treatment. Linear Prediction Coefficient (LPC), Linear Prediction Cepstral Coefficient (LPCC) and Line Spectral Frequency (LSF) were used for the feature extraction, while Multilayer Perceptron (MLP) was used as the classifier. The samples used were obtained from UCLASS (University College London Archive of Stuttered Speech) release 1. The LPCC-MLP system had the highest overall sensitivity, precision and the lowest overall misclassification rate. LPCC-MLP system had challenges with F3, the sensitivity of the system to F3 was negligible, similarly, the precision was moderate and the misclassification rate was negligible, but above 10%

    A Novel Approach to Stuttered Speech Correction

    Get PDF
    Stuttered speech is a dysfluency rich speech, more prevalent in males than females. It has been associated with insufficient air pressure or poor articulation, even though the root causes are more complex. The primary features include prolonged speech and repetitive speech, while some of its secondary features include, anxiety, fear, and shame. This study used LPC analysis and synthesis algorithms to reconstruct the stuttered speech. The results were evaluated using cepstral distance, Itakura-Saito distance, mean square error, and likelihood ratio. These measures implied perfect speech reconstruction quality. ASR was used for further testing, and the results showed that all the reconstructed speech samples were perfectly recognized while only three samples of the original speech were perfectly recognized

    Automatic Framework to Aid Therapists to Diagnose Children who Stutter

    Get PDF

    RECEIVER OPERATING CHARACTERISTICS MEASURE FOR THE RECOGNITION OF STUTTERING DYSFLUENCIES USING LINE SPECTRAL FREQUENCIES

    Get PDF
    Stuttering is a motor-speech disorder, having common features with other motor control disorders such as dystonia, Parkinson’s disease and Tourette’s syndrome. Stuttering results from complex interactions between factors such as motor, language, emotional and genetic. This study used Line Spectral Frequency (LSF) for the feature extraction, while using three classifiers for the identification purpose, Multilayer Perceptron (MLP), Recurrent Neural Network (RNN) and Radial Basis Function (RBF). The UCLASS (University College London Archive of Stuttered Speech) release 1 was used as database in this research. These recordings were from people of ages 12y11m to 19y5m, who were referred to clinics in London for assessment of their stuttering. The performance metrics used for interpreting the results are sensitivity, accuracy, precision and misclassification rate. Only M1 and M2 had below 100% sensitivity for RBF. The sensitivity of M1 was found to be between 40 & 60%, therefore categorized as moderate, while that of M2 falls between 60 & 80%, classed as substantial. Overall, RBF outperforms the two other classifiers, MLP and RNN for all the performance metrics considered

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The Models and Analysis of Vocal Emissions with Biomedical Applications (MAVEBA) workshop came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Down Syndrome

    Get PDF
    Down syndrome (DS), caused by the triplication of chromosome 21, is the most common genetic cause of intellectual disability (ID). Individuals with DS commonly exhibit unique neuropsychological profiles that emerge during specific developmental stages across the lifespan, often characterized by early developmental delay, cognitive strengths and weaknesses, behavior and mental health issues, and age-related cognitive decline, frequently resulting in early-onset Alzheimer’s disease. These profiles are unique compared to other individuals with ID and reflect the genetic mechanisms and neuroanatomic features underlying the distinct neuropsychological phenotype associated with DS. This Special Issue aims to highlight the recent advancements in understanding the neuropsychological phenotype associated with DS across the lifespan. The lifespan perspective will cover four developmental stages: (1) early childhood; (2) school age; (3) young adulthood, and (4) older adulthood. Authors contributed cutting-edge original research studies and comprehensive reviews that address a broad range of topics related to DS, including early developmental trajectories, cognitive functioning, language, adaptive skills, behavior and mental health, assessment and diagnosis, age-related cognitive decline, and medical issues related to the neuropsychological phenotype and neuroimaging

    Mechanising an algebraic rely-guarantee refinement calculus

    Get PDF
    PhD ThesisDespite rely-guarantee (RG) being a well-studied program logic established in the 1980s, it was not until recently that researchers realised that rely and guarantee conditions could be treated as independent programming constructs. This recent reformulation of RG paved the way to algebraic characterisations which have helped to better understand the difficulties that arise in the practical application of this development approach. The primary focus of this thesis is to provide automated tool support for a rely-guarantee refinement calculus proposed by Hayes et. al., where rely and guarantee are defined as independent commands. Our motivation is to investigate the application of an algebraic approach to derive concrete examples using this calculus. In the course of this thesis, we locate and fix a few issues involving the refinement language, its operational semantics and preexisting proofs. Moreover, we extend the refinement calculus of Hayes et. al. to cover indexed parallel composition, non-atomic evaluation of expressions within specifications, and assignment to indexed arrays. These extensions are illustrated via concrete examples. Special attention is given to design decisions that simplify the application of the mechanised theory. For example, we leave part of the design of the expression language on the hands of the user, at the cost of the requiring the user to define the notion of undefinedness for unary and binary operators; and we also formalise a notion of indexed parallelism that is parametric on the type of the indexes, this is done deliberately to simplify the formalisation of algorithms. Additionally, we use stratification to reduce the number of cases in in simulation proofs involving the operational semantics. Finally, we also use the algebra to discuss the role of types in program derivation

    Effects of cognitive load on expressive musical performances

    Get PDF
    corecore