48,546 research outputs found

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

    Get PDF
    I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.Comment: 35 pages, 3 figures, based on KES 2008 keynote and ALT 2007 / DS 2007 joint invited lectur

    The Machine Conception of the Organism in Development and Evolution: A Critical Analysis

    Get PDF
    This article critically examines one of the most prevalent metaphors in modern biology, namely the machine conception of the organism (MCO). Although the fundamental differences between organisms and machines make the MCO an inadequate metaphor for conceptualizing living systems, many biologists and philosophers continue to draw upon the MCO or tacitly accept it as the standard model of the organism. This paper analyses the specific difficulties that arise when the MCO is invoked in the study of development and evolution. In developmental biology the MCO underlies a logically incoherent model of ontogeny, the genetic program, which serves to legitimate three problematic theses about development: genetic animism, neo-preformationism, and developmental computability. In evolutionary biology the MCO is responsible for grounding unwarranted theoretical appeals to the concept of design as well as to the interpretation of natural selection as an engineer, which promote a distorted understanding of the process and products of evolutionary change. Overall, it is argued that, despite its heuristic value, the MCO today is impeding rather than enabling further progress in our comprehension of living systems

    Challenges to Teaching Credibility Assessment in Contemporary Schooling

    Get PDF
    Part of the Volume on Digital Media, Youth, and CredibilityThis chapter explores several challenges that exist to teaching credibility assessment in the school environment. Challenges range from institutional barriers such as government regulation and school policies and procedures to dynamic challenges related to young people's cognitive development and the consequent difficulties of navigating a complex web environment. The chapter includes a critique of current practices for teaching kids credibility assessment and highlights some best practices for credibility education

    Dynamic mapping strategies for interactive art installations: an embodied combined HCI HRI HHI approach

    Get PDF
    This paper proposes a theoretical framework for dealing with the paradigm of interactivity in new media art, and how the broad use of the term in different research fields can lead to some misunderstandings. The paper addresses a conceptual view on how we can implement interaction in new media art from an embodied approach that unites views from HCI, HRI and HHI. The focus is on an intuitive mapping of a multitude of sensor data and to extend upon this using the paradigm of (1) finite state machines (FSM) to address dynamic mapping strategies, (2) mediality to address aisthesis and (3) embodiment to address valid mapping strategies originated from natural body movements. The theory put forward is illustrated by a case study
    • …
    corecore