72 research outputs found

    Design of a Personal Health Monitor Interface for Wireless, IP-based, Data Logging

    Get PDF
    Collaborating with the Enterprise Research Centre at the University of Limerick (UL) in Ireland, we designed, developed, and implemented a proof-of-concept glucose meter adapter that allows blood glucose level readings to be securely transmitted to a remote database via existing WiFi technology. By using open source software and embedded components, we have created a highly flexible platform that allows healthcare professionals to monitor patients in near real-time. Our device aims to simplify the lifestyle of diabetics while providing new opportunities for statistical research and analysis of diabetes

    D2Gen: A Decentralized Device Genome Based Integrity Verification Mechanism for Collaborative Intrusion Detection Systems

    Get PDF
    Collaborative Intrusion Detection Systems are considered an effective defense mechanism for large, intricate, and multilayered Industrial Internet of Things against many cyberattacks. However, while a Collaborative Intrusion Detection System successfully detects and prevents various attacks, it is possible that an inside attacker performs a malicious act and compromises an Intrusion Detection System node. A compromised node can inflict considerable damage on the whole collaborative network. For instance, when a malicious node gives a false alert of an attack, the other nodes will unnecessarily increase their security and close all of their services, thus, degrading the system’s performance. On the contrary, if the spurious node approves malicious traffic into the system, the other nodes would also be compromised. Therefore, to detect a compromised node in the network, this article introduces a device integrity check mechanism based on “Digital Genome.” In medical science, a genome refers to a set that contains all of the information needed to build and maintain an organism. Based on the same concept, the digital genome is computed over a device’s vital hardware, software, and other components. Hence, if an attacker makes any change in a node’s hardware and software components, the digital genome will change, and the compromised node will be easily detected. It is envisaged that the proposed integrity attestation protocol can be used in diverse Internet of Things and other information technology applications to ensure the legitimate operation of end devices. This study also proffers a comprehensive security and performance analysis of the proposed framework

    Using Buildroot for building Embedded Linux Systems (BeagleBone Black)

    Get PDF
    This document describes the basic steps to develop and embedded Linux-based system using the BeagleBone Black (BBB). The document has been specifically written to use a BBB development system based on the AM335x Texas Instruments Sitara processor. All the software elements used to build the Linux distribution have a GPL licens

    Technological agglomeration and the emergence of clusters and networks in nanotechnology

    Get PDF
    Based on the analysis of two clusters in nanotechnologies (MESA+ in the Netherlands and Minatec in Grenoble in France), the paper examines the emergence and effects of technological agglomeration. The social and technical arrangements of a regional centre for nanotechnology both enable and constrain the ongoing activities and research lines that can be followed. Technology platforms and their co-location are a pre-requisite for nanotechnology research and agglomeration of such platforms are both a means and outcome for institutional entrepreneurs to mobilise resources, build networks and construct regional centres of excellence in nanotechnology. Technological agglomeration shapes the networks that evolve and leads to the convergence of scientific disciplines.TECHNOLOGICAL AGGLOMERATION;TECHNOLOGY PLATFORM;CLUSTER;DISTRICT; CONVERGING TECHNOLOGY;MULTILEVEL ACTIVITIES

    D2Gen: A Decentralized Device Genome Based Integrity Verification Mechanism for Collaborative Intrusion Detection Systems

    Full text link
    Collaborative Intrusion Detection Systems are considered an effective defense mechanism for large, intricate, and multilayered Industrial Internet of Things against many cyberattacks. However, while a Collaborative Intrusion Detection System successfully detects and prevents various attacks, it is possible that an inside attacker performs a malicious act and compromises an Intrusion Detection System node. A compromised node can inflict considerable damage on the whole collaborative network. For instance, when a malicious node gives a false alert of an attack, the other nodes will unnecessarily increase their security and close all of their services, thus, degrading the system's performance. On the contrary, if the spurious node approves malicious traffic into the system, the other nodes would also be compromised. Therefore, to detect a compromised node in the network, this article introduces a device integrity check mechanism based on 'Digital Genome.' In medical science, a genome refers to a set that contains all of the information needed to build and maintain an organism. Based on the same concept, the digital genome is computed over a device's vital hardware, software, and other components. Hence, if an attacker makes any change in a node's hardware and software components, the digital genome will change, and the compromised node will be easily detected. It is envisaged that the proposed integrity attestation protocol can be used in diverse Internet of Things and other information technology applications to ensure the legitimate operation of end devices. This study also proffers a comprehensive security and performance analysis of the proposed framework

    System-Level Power Estimation Methodology for MPSoC based Platforms

    Get PDF
    Avec l'essor des nouvelles technologies d'intégration sur silicium submicroniques, la consommation de puissance dans les systèmes sur puce multiprocesseur (MPSoC) est devenue un facteur primordial au niveau du flot de conception. La prise en considération de ce facteur clé dès les premières phases de conception, joue un rôle primordial puisqu'elle permet d'augmenter la fiabilité des composants et de réduire le temps d'arrivée sur le marché du produit final.Shifting the design entry point up to the system-level is the most important countermeasure adopted to manage the increasing complexity of Multiprocessor System on Chip (MPSoC). The reason is that decisions taken at this level, early in the design cycle, have the greatest impact on the final design in terms of power and energy efficiency. However, taking decisions at this level is very difficult, since the design space is extremely wide and it has so far been mostly a manual activity. Efficient system-level power estimation tools are therefore necessary to enable proper Design Space Exploration (DSE) based on power/energy and timing.VALENCIENNES-Bib. électronique (596069901) / SudocSudocFranceF

    Real Time UAV Altitude, Attitude and Motion Estimation form Hybrid Stereovision

    Get PDF
    International audienceKnowledge of altitude, attitude and motion is essential for an Unmanned Aerial Vehicle during crit- ical maneuvers such as landing and take-off. In this paper we present a hybrid stereoscopic rig composed of a fisheye and a perspective camera for vision-based navigation. In contrast to classical stereoscopic systems based on feature matching, we propose methods which avoid matching between hybrid views. A plane-sweeping approach is proposed for estimating altitude and de- tecting the ground plane. Rotation and translation are then estimated by decoupling: the fisheye camera con- tributes to evaluating attitude, while the perspective camera contributes to estimating the scale of the trans- lation. The motion can be estimated robustly at the scale, thanks to the knowledge of the altitude. We propose a robust, real-time, accurate, exclusively vision-based approach with an embedded C++ implementation. Although this approach removes the need for any non-visual sensors, it can also be coupled with an Inertial Measurement Unit

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    A Race-Police Regime: NYPD Technology and Urban Governance in New York City

    Full text link
    This dissertation draws on three years of ethnographic and archival research to explore the relationship between technology, policing and race at the NYPD. In focusing on the ways problems are constructed and police power enacted, I explore the more-than-human entanglements in the production of race and the governance of cities under racial capitalism. My overarching claim is that urban governance works through contentious techno-political arrangements I call race-police regimes, which sanction and elicit race by enacting forms of exclusion and belonging. Racial capitalism in New York City, I argue, is governed through a technocratic mode of policing which leverages and entrenches a liberal faith in crime statistics and a common sense regarding the objectivity of crime phenomena and the proper means of upholding social order. Even as it convenes carceral publics across class, race and gender divides, it also underwrites moral panics directed at presumptively criminal anticitizens which are figured archetypically as black. Race-police regimes produce their own justifications and so can remain viable when called into question by protests. Yet they are also riven with antagonism and thus constantly propelled toward rupture and reinvention

    Terrier: an embedded operating system using advanced types for safety

    Get PDF
    Operating systems software is fundamental to modern computer systems: all other applications are dependent upon the correct and timely provision of basic system services. At the same time, advances in programming languages and type theory have lead to the creation of functional programming languages with type systems that are designed to combine theorem proving with practical systems programming. The Terrier operating system project focuses on low-level systems programming in the context of a multi-core, real-time, embedded system, while taking advantage of a dependently typed programming language named ATS to improve reliability. Terrier is a new point in the design space for an operating system, one that leans heavily on an associated programming language, ATS, to provide safety that has traditionally been in the scope of hardware protection and kernel privilege. Terrier tries to have far fewer abstractions between program and hardware. The purpose of Terrier is to put programs as much in contact with the real hardware, real memory, and real timing constraints as possible, while still retaining the ability to multiplex programs and provide for a reasonable level of safety through static analysis
    corecore