5,436 research outputs found

    Introduction to Quantum Information Processing

    Full text link
    As a result of the capabilities of quantum information, the science of quantum information processing is now a prospering, interdisciplinary field focused on better understanding the possibilities and limitations of the underlying theory, on developing new applications of quantum information and on physically realizing controllable quantum devices. The purpose of this primer is to provide an elementary introduction to quantum information processing, and then to briefly explain how we hope to exploit the advantages of quantum information. These two sections can be read independently. For reference, we have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at http://www.c3.lanl.gov/~knill/qip/prhtm

    Cohomology for Anyone

    Full text link
    Crystallography has proven a rich source of ideas over several centuries. Among the many ways of looking at space groups, N. David Mermin has pioneered the Fourier-space approach. Recently, we have supplemented this approach with methods borrowed from algebraic topology. We now show what topology, which studies global properties of manifolds, has to do with crystallography. No mathematics is assumed beyond what the typical physics or crystallography student will have seen of group theory; in particular, the reader need not have any prior exposure to topology or to cohomology of groups.Comment: 21 pages + figures, bibliography, Mathematica code homology.

    Quantum algorithms for problems in number theory, algebraic geometry, and group theory

    Full text link
    Quantum computers can execute algorithms that sometimes dramatically outperform classical computation. Undoubtedly the best-known example of this is Shor's discovery of an efficient quantum algorithm for factoring integers, whereas the same problem appears to be intractable on classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article will review the current state of quantum algorithms, focusing on algorithms for problems with an algebraic flavor that achieve an apparent superpolynomial speedup over classical computation.Comment: 20 pages, lecture notes for 2010 Summer School on Diversities in Quantum Computation/Information at Kinki Universit

    Generating a Quadratic Forms from a Given Genus

    Full text link
    Given a non-empty genus in nn dimensions with determinant dd, we give a randomized algorithm that outputs a quadratic form from this genus. The time complexity of the algorithm is poly(n,logd)(n,\log d); assuming Generalized Riemann Hypothesis (GRH).Comment: arXiv admin note: text overlap with arXiv:1409.619
    corecore