1,058 research outputs found

    A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure

    Full text link
    The use of an automatic system for the analysis of mammographic images has proven to be very useful to radiologists in the investigation of breast cancer, especially in the framework of mammographic-screening programs. A breast neoplasia is often marked by the presence of microcalcification clusters and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. In the framework of the GPCALMA (GRID Platform for Computer Assisted Library for MAmmography) project, the co-working of italian physicists and radiologists built a large distributed database of digitized mammographic images (about 5500 images corresponding to 1650 patients) and developed a CAD (Computer Aided Detection) system, able to make an automatic search of massive lesions and microcalcification clusters. The CAD is implemented in the GPCALMA integrated station, which can be used also for digitization, as archive and to perform statistical analyses. Some GPCALMA integrated stations have already been implemented and are currently on clinical trial in some italian hospitals. The emerging GRID technology can been used to connect the GPCALMA integrated stations operating in different medical centers. The GRID approach will support an effective tele- and co-working between radiologists, cancer specialists and epidemiology experts by allowing remote image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Breast Cancer Detection by Means of Artificial Neural Networks

    Get PDF
    Breast cancer is a fatal disease causing high mortality in women. Constant efforts are being made for creating more efficient techniques for early and accurate diagnosis. Classical methods require oncologists to examine the breast lesions for detection and classification of various stages of cancer. Such manual attempts are time consuming and inefficient in many cases. Hence, there is a need for efficient methods that diagnoses the cancerous cells without human involvement with high accuracies. In this research, image processing techniques were used to develop imaging biomarkers through mammography analysis and based on artificial intelligence technology aiming to detect breast cancer in early stages to support diagnosis and prioritization of high-risk patients. For automatic classification of breast cancer on mammograms, a generalized regression artificial neural network was trained and tested to separate malignant and benign tumors reaching an accuracy of 95.83%. With the biomarker and trained neural net, a computer-aided diagnosis system is being designed. The results obtained show that generalized regression artificial neural network is a promising and robust system for breast cancer detection. The Laboratorio de Innovacion y Desarrollo Tecnologico en Inteligencia Artificial is seeking collaboration with research groups interested in validating the technology being developed
    • …
    corecore