989 research outputs found

    Search-based Motion Planning for Aggressive Flight in SE(3)

    Get PDF
    Quadrotors with large thrust-to-weight ratios are able to track aggressive trajectories with sharp turns and high accelerations. In this work, we develop a search-based trajectory planning approach that exploits the quadrotor maneuverability to generate sequences of motion primitives in cluttered environments. We model the quadrotor body as an ellipsoid and compute its flight attitude along trajectories in order to check for collisions against obstacles. The ellipsoid model allows the quadrotor to pass through gaps that are smaller than its diameter with non-zero pitch or roll angles. Without any prior information about the location of gaps and associated attitude constraints, our algorithm is able to find a safe and optimal trajectory that guides the robot to its goal as fast as possible. To accelerate planning, we first perform a lower dimensional search and use it as a heuristic to guide the generation of a final dynamically feasible trajectory. We analyze critical discretization parameters of motion primitive planning and demonstrate the feasibility of the generated trajectories in various simulations and real-world experiments.Comment: 8 pages, submitted to RAL and ICRA 201

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table
    • …
    corecore