5,157 research outputs found

    Routing Autonomous Vehicles in Congested Transportation Networks: Structural Properties and Coordination Algorithms

    Full text link
    This paper considers the problem of routing and rebalancing a shared fleet of autonomous (i.e., self-driving) vehicles providing on-demand mobility within a capacitated transportation network, where congestion might disrupt throughput. We model the problem within a network flow framework and show that under relatively mild assumptions the rebalancing vehicles, if properly coordinated, do not lead to an increase in congestion (in stark contrast to common belief). From an algorithmic standpoint, such theoretical insight suggests that the problem of routing customers and rebalancing vehicles can be decoupled, which leads to a computationally-efficient routing and rebalancing algorithm for the autonomous vehicles. Numerical experiments and case studies corroborate our theoretical insights and show that the proposed algorithm outperforms state-of-the-art point-to-point methods by avoiding excess congestion on the road. Collectively, this paper provides a rigorous approach to the problem of congestion-aware, system-wide coordination of autonomously driving vehicles, and to the characterization of the sustainability of such robotic systems.Comment: 11 pages, 3 figures. Presented at Robotics: Science and Systems (RSS) 2016. Version 2 is the extended version of the final submission included in the conference proceedings. The title of the initial submission was modified in deference to RSS's double-blind submission process: in this version, the title matches the published pape

    Optimizing the Deployment of Electric Vehicle Charging Stations Using Pervasive Mobility Data

    Full text link
    With recent advances in battery technology and the resulting decrease in the charging times, public charging stations are becoming a viable option for Electric Vehicle (EV) drivers. Concurrently, wide-spread use of location-tracking devices in mobile phones and wearable devices makes it possible to track individual-level human movements to an unprecedented spatial and temporal grain. Motivated by these developments, we propose a novel methodology to perform data-driven optimization of EV charging stations location. We formulate the problem as a discrete optimization problem on a geographical grid, with the objective of covering the entire demand region while minimizing a measure of drivers' discomfort. Since optimally solving the problem is computationally infeasible, we present computationally efficient, near-optimal solutions based on greedy and genetic algorithms. We then apply the proposed methodology to optimize EV charging stations location in the city of Boston, starting from a massive cellular phone data sets covering 1 million users over 4 months. Results show that genetic algorithm based optimization provides the best solutions in terms of drivers' discomfort and the number of charging stations required, which are both reduced about 10 percent as compared to a randomized solution. We further investigate robustness of the proposed data-driven methodology, showing that, building upon well-known regularity of aggregate human mobility patterns, the near-optimal solution computed using single day movements preserves its properties also in later months. When collectively considered, the results presented in this paper clearly indicate the potential of data-driven approaches for optimally locating public charging facilities at the urban scale.Comment: 11 pages, 8 figures, submitte

    Surrogate-based toll optimization in a large-scale heterogeneously congested network

    Full text link
    Toll optimization in a large-scale dynamic traffic network is typically characterized by an expensive-to-evaluate objective function. In this paper, we propose two toll level problems (TLPs) integrated with a large-scale simulation-based dynamic traffic assignment (DTA) model of Melbourne, Australia. The first TLP aims to control the pricing zone (PZ) through a time-varying joint distance and delay toll (JDDT) such that the network fundamental diagram (NFD) of the PZ does not enter the congested regime. The second TLP is built upon the first TLP by further considering the minimization of the heterogeneity of congestion distribution in the PZ. To solve the two TLPs, a computationally efficient surrogate-based optimization method, i.e., regressing kriging (RK) with expected improvement (EI) sampling, is applied to approximate the simulation input-output mapping, which can balance well between local exploitation and global exploration. Results show that the two optimal TLP solutions reduce the average travel time in the PZ (entire network) by 29.5% (1.4%) and 21.6% (2.5%), respectively. Reducing the heterogeneity of congestion distribution achieves higher network flows in the PZ and a lower average travel time or a larger total travel time saving in the entire network.Comment: 16 pages, 7 figure

    Scalable and Congestion-aware Routing for Autonomous Mobility-on-Demand via Frank-Wolfe Optimization

    Full text link
    We consider the problem of vehicle routing for Autonomous Mobility-on-Demand (AMoD) systems, wherein a fleet of self-driving vehicles provides on-demand mobility in a given environment. Specifically, the task it to compute routes for the vehicles (both customer-carrying and empty travelling) so that travel demand is fulfilled and operational cost is minimized. The routing process must account for congestion effects affecting travel times, as modeled via a volume-delay function (VDF). Route planning with VDF constraints is notoriously challenging, as such constraints compound the combinatorial complexity of the routing optimization process. Thus, current solutions for AMoD routing resort to relaxations of the congestion constraints, thereby trading optimality with computational efficiency. In this paper, we present the first computationally-efficient approach for AMoD routing where VDF constraints are explicitly accounted for. We demonstrate that our approach is faster by at least one order of magnitude with respect to the state of the art, while providing higher quality solutions. From a methodological standpoint, the key technical insight is to establish a mathematical reduction of the AMoD routing problem to the classical traffic assignment problem (a related vehicle-routing problem where empty traveling vehicles are not present). Such a reduction allows us to extend powerful algorithmic tools for traffic assignment, which combine the classic Frank-Wolfe algorithm with modern techniques for pathfinding, to the AMoD routing problem. We provide strong theoretical guarantees for our approach in terms of near-optimality of the returned solution

    Applications of sensitivity analysis for probit stochastic network equilibrium

    Get PDF
    Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported

    A context-based geoprocessing framework for optimizing meetup location of multiple moving objects along road networks

    Full text link
    Given different types of constraints on human life, people must make decisions that satisfy social activity needs. Minimizing costs (i.e., distance, time, or money) associated with travel plays an important role in perceived and realized social quality of life. Identifying optimal interaction locations on road networks when there are multiple moving objects (MMO) with space-time constraints remains a challenge. In this research, we formalize the problem of finding dynamic ideal interaction locations for MMO as a spatial optimization model and introduce a context-based geoprocessing heuristic framework to address this problem. As a proof of concept, a case study involving identification of a meetup location for multiple people under traffic conditions is used to validate the proposed geoprocessing framework. Five heuristic methods with regard to efficient shortest-path search space have been tested. We find that the R* tree-based algorithm performs the best with high quality solutions and low computation time. This framework is implemented in a GIS environment to facilitate integration with external geographic contextual information, e.g., temporary road barriers, points of interest (POI), and real-time traffic information, when dynamically searching for ideal meetup sites. The proposed method can be applied in trip planning, carpooling services, collaborative interaction, and logistics management.Comment: 34 pages, 8 figure

    Surrogate-assisted cooperative signal optimization for large-scale traffic networks

    Full text link
    Reasonable setting of traffic signals can be very helpful in alleviating congestion in urban traffic networks. Meta-heuristic optimization algorithms have proved themselves to be able to find high-quality signal timing plans. However, they generally suffer from performance deterioration when solving large-scale traffic signal optimization problems due to the huge search space and limited computational budget. Directing against this issue, this study proposes a surrogate-assisted cooperative signal optimization (SCSO) method. Different from existing methods that directly deal with the entire traffic network, SCSO first decomposes it into a set of tractable sub-networks, and then achieves signal setting by cooperatively optimizing these sub-networks with a surrogate-assisted optimizer. The decomposition operation significantly narrows the search space of the whole traffic network, and the surrogate-assisted optimizer greatly lowers the computational burden by reducing the number of expensive traffic simulations. By taking Newman fast algorithm, radial basis function and a modified estimation of distribution algorithm as decomposer, surrogate model and optimizer, respectively, this study develops a concrete SCSO algorithm. To evaluate its effectiveness and efficiency, a large-scale traffic network involving crossroads and T-junctions is generated based on a real traffic network. Comparison with several existing meta-heuristic algorithms specially designed for traffic signal optimization demonstrates the superiority of SCSO in reducing the average delay time of vehicles

    Dynamic Pricing in Shared Mobility on Demand Service

    Full text link
    We consider a profit maximization problem in an urban mobility on-demand service, of which the operator owns a fleet, provides both exclusive and shared trip services, and dynamically determines prices of offers. With knowledge of the traveler preference and the distribution of future trip requests, the operator wants to find the pricing strategy that optimizes the total operating profit of multiple trips during a specific period, namely, a day in this paper. This problem is first formulated and analyzed within the dynamic programming framework, where a general approach combining parametric rollout policy and stochastic optimization is proposed. A discrete-choice-based price optimization model is then used for the request level optimal decision problem and leads to a practical and computationally tractable algorithm for the problem. Our algorithm is evaluated with a simulated experiment in the urban traffic network in Langfang, China, and it is shown to generate considerably higher profit than naive strategies. Further analysis shows that this method also leads to higher congestion level and lower service capacity in the urban traffic system, which highlights a need for policy interventions that balance the private profit making and the system level optimality

    Autonomous Air Traffic Controller: A Deep Multi-Agent Reinforcement Learning Approach

    Full text link
    Air traffic control is a real-time safety-critical decision making process in highly dynamic and stochastic environments. In today's aviation practice, a human air traffic controller monitors and directs many aircraft flying through its designated airspace sector. With the fast growing air traffic complexity in traditional (commercial airliners) and low-altitude (drones and eVTOL aircraft) airspace, an autonomous air traffic control system is needed to accommodate high density air traffic and ensure safe separation between aircraft. We propose a deep multi-agent reinforcement learning framework that is able to identify and resolve conflicts between aircraft in a high-density, stochastic, and dynamic en-route sector with multiple intersections and merging points. The proposed framework utilizes an actor-critic model, A2C that incorporates the loss function from Proximal Policy Optimization (PPO) to help stabilize the learning process. In addition we use a centralized learning, decentralized execution scheme where one neural network is learned and shared by all agents in the environment. We show that our framework is both scalable and efficient for large number of incoming aircraft to achieve extremely high traffic throughput with safety guarantee. We evaluate our model via extensive simulations in the BlueSky environment. Results show that our framework is able to resolve 99.97% and 100% of all conflicts both at intersections and merging points, respectively, in extreme high-density air traffic scenarios.Comment: 10 page

    Gramian-Based Optimization for the Analysis and Control of Traffic Networks

    Full text link
    This paper proposes a simplified version of classical models for urban transportation networks, and studies the problem of controlling intersections with the goal of optimizing network-wide congestion. Differently from traditional approaches to control traffic signaling, a simplified framework allows for a more tractable analysis of the network overall dynamics, and enables the design of critical parameters while considering network-wide measures of efficiency. Motivated by the increasing availability of real-time high-resolution traffic data, we cast an optimization problem that formalizes the goal of minimizing the overall network congestion by optimally controlling the durations of green lights at intersections. Our formulation allows us to relate congestion objectives with the problem of optimizing a metric of controllability of an associated dynamical network. We then provide a technique to efficiently solve the optimization by parallelizing the computation among a group of distributed agents. Lastly, we assess the benefits of the proposed modeling and optimization framework through microscopic simulations on typical traffic commute scenarios for the area of Manhattan. The optimization framework proposed in this study is made available online on a Sumo microscopic simulator based interface [1]
    • …
    corecore