582 research outputs found

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Traffic classification and prediction, and fast uplink grant allocation for machine type communications via support vector machines and long short-term memory

    Get PDF
    Abstract. The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving machine type communication (MTC) applications. Therefore, 3GPP has introduced the need to use fast uplink grant (FUG) allocation. This thesis proposes a novel FUG allocation based on support vector machine (SVM) and long short-term memory (LSTM). First, MTC devices are prioritized using SVM classifier. Second, LSTM architecture is used to predict activation time of each device. Both results are used to achieve an efficient resource scheduler in terms of the average latency and total throughput. Furthermore, a set of correction techniques is introduced to overcome the classification and prediction errors. The Coupled Markov Modulated Poisson Process (CMMPP) traffic model is applied to compare the proposed FUG allocation to other existing allocation techniques. In addition, an extended traffic model based CMMPP is used to evaluate the proposed algorithm in a more dense network. Our simulation results show the proposed model outperforms the existing RA allocation schemes by achieving the highest throughput and the lowest access delay when serving the target massive and critical MTC applications

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    UE Uplink Power Distribution for M2M over LTE

    Get PDF

    Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

    Full text link
    New communication standards need to deal with machine-to-machine communications, in which users may start or stop transmitting at any time in an asynchronous manner. Thus, the number of users is an unknown and time-varying parameter that needs to be accurately estimated in order to properly recover the symbols transmitted by all users in the system. In this paper, we address the problem of joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop the infinite factorial finite state machine model, a Bayesian nonparametric model based on the Markov Indian buffet that allows for an unbounded number of transmitters with arbitrary channel length. We propose an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our approach is fully blind as it does not require a prior channel estimation step, prior knowledge of the number of transmitters, or any signaling information. Our experimental results, loosely based on the LTE random access channel, show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios, with varying number of transmitters, number of receivers, constellation order, channel length, and signal-to-noise ratio.Comment: 15 pages, 15 figure

    Optimized resource allocation techniques for critical machine-type communications in mixed LTE networks

    Get PDF
    To implement the revolutionary Internet of Things (IoT) paradigm, the evolution of the communication networks to incorporate machine-type communications (MTC), in addition to conventional human-type communications (HTC) has become inevitable. Critical MTC, in contrast to massive MTC, represents that type of communications that requires high network availability, ultra-high reliability, very low latency, and high security, to enable what is known as mission-critical IoT. Due to the fact that cellular networks are considered one of the most promising wireless technologies to serve critical MTC, the International Telecommunication Union (ITU) targets critical MTC as a major use case, along with the enhanced mobile broadband (eMBB) and massive MTC, in the design of the upcoming generation of cellular networks. Therefore, the Third Generation Partnership Project (3GPP) is evolving the current Long-Term Evolution (LTE) standard to efficiently serve critical MTC to fulfill the fifth-generation (5G) requirements using the evolved LTE (eLTE) in addition to the new radio (NR). In this regard, 3GPP has introduced several enhancements in the latest releases to support critical MTC in LTE, which is designed mainly for HTC. However, guaranteeing stringent quality-of-service (QoS) for critical MTC while not sacrificing that of conventional HTC is a challenging task from the radio resource management perspective. In this dissertation, we optimize the resource allocation and scheduling process for critical MTC in mixed LTE networks in different operational and implementation cases. We target maximizing the overall system utility while providing accurate guarantees for the QoS requirements of critical MTC, through a cross-layer design, and that of HTC as well. For this purpose, we utilize advanced techniques from the queueing theory and mathematical optimization. In addition, we adopt heuristic approaches and matching-based techniques to design computationally-efficient resource allocation schemes to be used in practice. In this regard, we analyze the proposed methods from a practical perspective. Furthermore, we run extensive simulations to evaluate the performance of the proposed techniques, validate the theoretical analysis, and compare the performance with other schemes. The simulation results reveal a close-to-optimal performance for the proposed algorithms while outperforming other techniques from the literature
    corecore