31,643 research outputs found

    Investigation of Frame Alignments for GMM-based Digit-prompted Speaker Verification

    Full text link
    Frame alignments can be computed by different methods in GMM-based speaker verification. By incorporating a phonetic Gaussian mixture model (PGMM), we are able to compare the performance using alignments extracted from the deep neural networks (DNN) and the conventional hidden Markov model (HMM) in digit-prompted speaker verification. Based on the different characteristics of these two alignments, we present a novel content verification method to improve the system security without much computational overhead. Our experiments on the RSR2015 Part-3 digit-prompted task show that, the DNN based alignment performs on par with the HMM alignment. The results also demonstrate the effectiveness of the proposed Kullback-Leibler (KL) divergence based scoring to reject speech with incorrect pass-phrases.Comment: accepted by APSIPA ASC 201

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain

    Unsupervised Generative Modeling Using Matrix Product States

    Full text link
    Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard datasets including the Bars and Stripes, random binary patterns and the MNIST handwritten digits to illustrate the abilities, features and drawbacks of our model over popular generative models such as Hopfield model, Boltzmann machines and generative adversarial networks. Our work sheds light on many interesting directions of future exploration on the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to be realized on quantum devices.Comment: 11 pages, 12 figures (not including the TNs) GitHub Page: https://congzlwag.github.io/UnsupGenModbyMPS

    Temporal Attention-Gated Model for Robust Sequence Classification

    Full text link
    Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention models and gated recurrent networks to better deal with noisy or unsegmented sequences. Specifically, we extend the concept of attention model to measure the relevance of each observation (time step) of a sequence. We then use a novel gated recurrent network to learn the hidden representation for the final prediction. An important advantage of our approach is interpretability since the temporal attention weights provide a meaningful value for the salience of each time step in the sequence. We demonstrate the merits of our TAGM approach, both for prediction accuracy and interpretability, on three different tasks: spoken digit recognition, text-based sentiment analysis and visual event recognition.Comment: Accepted by CVPR 201
    • …
    corecore