19,688 research outputs found

    Usage-based and emergentist approaches to language acquisition

    Get PDF
    It was long considered to be impossible to learn grammar based on linguistic experience alone. In the past decade, however, advances in usage-based linguistic theory, computational linguistics, and developmental psychology changed the view on this matter. So-called usage-based and emergentist approaches to language acquisition state that language can be learned from language use itself, by means of social skills like joint attention, and by means of powerful generalization mechanisms. This paper first summarizes the assumptions regarding the nature of linguistic representations and processing. Usage-based theories are nonmodular and nonreductionist, i.e., they emphasize the form-function relationships, and deal with all of language, not just selected levels of representations. Furthermore, storage and processing is considered to be analytic as well as holistic, such that there is a continuum between children's unanalyzed chunks and abstract units found in adult language. In the second part, the empirical evidence is reviewed. Children's linguistic competence is shown to be limited initially, and it is demonstrated how children can generalize knowledge based on direct and indirect positive evidence. It is argued that with these general learning mechanisms, the usage-based paradigm can be extended to multilingual language situations and to language acquisition under special circumstances

    Tight Lower Bound for Comparison-Based Quantile Summaries

    Get PDF
    Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles, up to an error of at most ε\varepsilon. That is, an ε\varepsilon-approximate quantile summary first processes a stream of items and then, given any quantile query 0ϕ10\le \phi\le 1, returns an item from the stream, which is a ϕ\phi'-quantile for some ϕ=ϕ±ε\phi' = \phi \pm \varepsilon. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna (SIGMOD '01), stores at most O(1εlogεN)O(\frac{1}{\varepsilon}\cdot \log \varepsilon N) items, where NN is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)o(logN)f(\varepsilon)\cdot o(\log N), for any function ff that does not depend on NN. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1±ε)ϕ(1\pm \varepsilon)\cdot \phi, and for other related computational tasks.Comment: 20 pages, 2 figures, major revison of the construction (Sec. 3) and some other parts of the pape

    A Unified multilingual semantic representation of concepts

    Get PDF
    Semantic representation lies at the core of several applications in Natural Language Processing. However, most existing semantic representation techniques cannot be used effectively for the representation of individual word senses. We put forward a novel multilingual concept representation, called MUFFIN , which not only enables accurate representation of word senses in different languages, but also provides multiple advantages over existing approaches. MUFFIN represents a given concept in a unified semantic space irrespective of the language of interest, enabling cross-lingual comparison of different concepts. We evaluate our approach in two different evaluation benchmarks, semantic similarity and Word Sense Disambiguation, reporting state-of-the-art performance on several standard datasets

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    Joint Subcarrier and Power Allocation in NOMA: Optimal and Approximate Algorithms

    Get PDF
    Non-orthogonal multiple access (NOMA) is a promising technology to increase the spectral efficiency and enable massive connectivity in 5G and future wireless networks. In contrast to orthogonal schemes, such as OFDMA, NOMA multiplexes several users on the same frequency and time resource. Joint subcarrier and power allocation problems (JSPA) in NOMA are NP-hard to solve in general. In this family of problems, we consider the weighted sum-rate (WSR) objective function as it can achieve various tradeoffs between sum-rate performance and user fairness. Because of JSPA's intractability, a common approach in the literature is to solve separately the power control and subcarrier allocation (also known as user selection) problems, therefore achieving sub-optimal result. In this work, we first improve the computational complexity of existing single-carrier power control and user selection schemes. These improved procedures are then used as basic building blocks to design new algorithms, namely Opt-JSPA, ε\varepsilon-JSPA and Grad-JSPA. Opt-JSPA computes an optimal solution with lower complexity than current optimal schemes in the literature. It can be used as a benchmark for optimal WSR performance in simulations. However, its pseudo-polynomial time complexity remains impractical for real-world systems with low latency requirements. To further reduce the complexity, we propose a fully polynomial-time approximation scheme called ε\varepsilon-JSPA. Since, no approximation has been studied in the literature, ε\varepsilon-JSPA stands out by allowing to control a tight trade-off between performance guarantee and complexity. Finally, Grad-JSPA is a heuristic based on gradient descent. Numerical results show that it achieves near-optimal WSR with much lower complexity than existing optimal methods

    The Narrow Conception of Computational Psychology

    Get PDF
    One particularly successful approach to modeling within cognitive science is computational psychology. Computational psychology explores psychological processes by building and testing computational models with human data. In this paper, it is argued that a specific approach to understanding computation, what is called the ‘narrow conception’, has problematically limited the kinds of models, theories, and explanations that are offered within computational psychology. After raising two problems for the narrow conception, an alternative, ‘wide approach’ to computational psychology is proposed

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc
    corecore