1,628 research outputs found

    Prediction of blast-induced air overpressure using a hybrid machine learning model and gene expression programming (GEP) : a case study from an iron ore mine

    Get PDF
    Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R 2 ), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations

    Stochastic-optimization of equipment productivity in multi-seam formations

    Get PDF
    Short and long range planning and execution for multi-seam coal formations (MSFs) are challenging with complex extraction mechanisms. Stripping equipment selection and scheduling are functions of the physical dynamics of the mine and the operational mechanisms of its components, thus its productivity is dependent on these parameters. Previous research studies did not incorporate quantitative relationships between equipment productivities and extraction dynamics in MSFs. The intrinsic variability of excavation and spoiling dynamics must also form part of existing models. This research formulates quantitative relationships of equipment productivities using Branch-and-Bound algorithms and Lagrange Parameterization approaches. The stochastic processes are resolved via Monte Carlo/Latin Hypercube simulation techniques within @RISK framework. The model was presented with a bituminous coal mining case in the Appalachian field. The simulated results showed a 3.51% improvement in mining cost and 0.19% increment in net present value. A 76.95ydĀ³ drop in productivity per unit change in cycle time was recorded for sub-optimal equipment schedules. The geologic variability and equipment operational parameters restricted any possible change in the cost function. A 50.3% chance of the mining cost increasing above its current value was driven by the volume of material re-handled with 0.52 regression coefficient. The study advances the optimization process in mine planning and scheduling algorithms, to efficiently capture future uncertainties surrounding multivariate random functions. The main novelty includes the application of stochastic-optimization procedures to improve equipment productivity in MSFs --Abstract, page iii

    Optimizing hybrid decentralized systems for sustainable urban drainage infrastructures planning

    Get PDF

    Height Information Aided 3D Real-Time Large-Scale Underground User Positioning

    Get PDF
    Due to the cost of inertial navigation and visual navigation equipment and lake of satellite navigation signals, they cannot be used in largeā€scale underground mining environment. To solve this problem, this study proposes largeā€scale underground 3D realā€time positioning method with seam height assistance. This method uses the ultrawide band positioning base station as the core and is combined with seam height information to build a factor graph confidence transfer model to realise3D positioning. The simulation results show that the proposed realā€time method is superior to the existing algorithms in positioning accuracy and can meet the needs of largeā€scale underground users

    Engineering shortest paths and layout algorithms for large graphs

    Get PDF

    A methodology for rapid vehicle scaling and configuration space exploration

    Get PDF
    Drastic changes in aircraft operational requirements and the emergence of new enabling technologies often occur symbiotically with advances in technology inducing new requirements and vice versa. These changes sometimes lead to the design of vehicle concepts for which no prior art exists. They lead to revolutionary concepts. In such cases the basic form of the vehicle geometry can no longer be determined through an ex ante survey of prior art as depicted by aircraft concepts in the historical domain. Ideally, baseline geometries for revolutionary concepts would be the result of exhaustive configuration space exploration and optimization. Numerous component layouts and their implications for the minimum external dimensions of the resultant vehicle would be evaluated. The dimensions of the minimum enclosing envelope for the best component layout(s) (as per the design need) would then be used as a basis for the selection of a baseline geometry. Unfortunately layout design spaces are inherently large and the key contributing analysis i.e. collision detection, can be very expensive as well. Even when an appropriate baseline geometry has been identified, another hurdle i.e. vehicle scaling has to be overcome. Through the design of a notional Cessna C-172R powered by a liquid hydrogen Proton Exchange Membrane (PEM) fuel cell, it has been demonstrated that the various forms of vehicle scaling i.e. photographic and historical-data-based scaling can result in highly sub-optimal results even for very small O(10-3) scale factors. There is therefore a need for higher fidelity vehicle scaling laws especially since emergent technologies tend to be volumetrically and/or gravimetrically constrained when compared to incumbents. The Configuration-space Exploration and Scaling Methodology (CESM) is postulated herein as a solution to the above-mentioned challenges. This bottom-up methodology entails the representation of component or sub-system geometries as matrices of points in 3D space. These typically large matrices are reduced using minimal convex sets or convex hulls. This reduction leads to significant gains in collision detection speed at minimal approximation expense. (The Gilbert-Johnson-Keerthi algorithm is used for collision detection purposes in this methodology.) Once the components are laid out, their collective convex hull (from here on out referred to as the super-hull) is used to approximate the inner mold line of the minimum enclosing envelope of the vehicle concept. A sectional slicing algorithm is used to extract the sectional dimensions of this envelope. An offset is added to these dimensions in order to come up with the sectional fuselage dimensions. Once the lift and control surfaces are added, vehicle level objective functions can be evaluated and compared to other designs. For each design, changes in the super-hull dimensions in response to perturbations in requirements can be tracked and regressed to create custom geometric scaling laws. The regressions are based on dimensionally consistent parameter groups in order to come up with dimensionally consistent and thus physically meaningful laws. CESM enables the designer to maintain design freedom by portably carrying multiple designs deeper into the design process. Also since CESM is a bottom-up approach, all proposed baseline concepts are implicitly volumetrically feasible. Furthermore the scaling laws developed from custom data for each concept are subject to less design noise than say, regression based approaches. Through these laws, key physics-based characteristics of vehicle subsystems such as energy density can be mapped onto key system level metrics such as fuselage volume or take-off gross weight. These laws can then substitute some historical-data based analyses thereby improving the fidelity of the analyses and reducing design time.Ph.D.Committee Chair: Dr. Dimitri Mavris; Committee Member: Dean Ward; Committee Member: Dr. Daniel Schrage; Committee Member: Dr. Danielle Soban; Committee Member: Dr. Sriram Rallabhandi; Committee Member: Mathias Emenet
    • ā€¦
    corecore