5 research outputs found

    A Computational Approach for Human-like Motion Generation in Upper Limb Exoskeletons Supporting Scapulohumeral Rhythms

    Full text link
    This paper proposes a computational approach for generation of reference path for upper-limb exoskeletons considering the scapulohumeral rhythms of the shoulder. The proposed method can be used in upper-limb exoskeletons with 3 Degrees of Freedom (DoF) in shoulder and 1 DoF in elbow, which are capable of supporting shoulder girdle. The developed computational method is based on Central Nervous System (CNS) governing rules. Existing computational reference generation methods are based on the assumption of fixed shoulder center during motions. This assumption can be considered valid for reaching movements with limited range of motion (RoM). However, most upper limb motions such as Activities of Daily Living (ADL) include large scale inward and outward reaching motions, during which the center of shoulder joint moves significantly. The proposed method generates the reference motion based on a simple model of human arm and a transformation can be used to map the developed motion for other exoskeleton with different kinematics. Comparison of the model outputs with experimental results of healthy subjects performing ADL, show that the proposed model is able to reproduce human-like motions.Comment: In 2017 IEEE International Symposium on Wearable & Rehabilitation Robotics (WeRob2017

    Actas de SABI2020

    Get PDF
    Los temas salientes incluyen un marcapasos pulmonar que promete complementar y eventualmente sustituir la conocida ventilación mecánica por presión positiva (intubación), el análisis de la marchaespontánea sin costosos equipamientos, las imágenes infrarrojas y la predicción de la salud cardiovascular en temprana edad por medio de la biomecánica arterial
    corecore