67 research outputs found

    System Characterizations and Optimized Reconstruction Methods for Novel X-ray Imaging

    Get PDF
    In the past decade there have been many new emerging X-ray based imaging technologies developed for different diagnostic purposes or imaging tasks. However, there exist one or more specific problems that prevent them from being effectively or efficiently employed. In this dissertation, four different novel X-ray based imaging technologies are discussed, including propagation-based phase-contrast (PB-XPC) tomosynthesis, differential X-ray phase-contrast tomography (D-XPCT), projection-based dual-energy computed radiography (DECR), and tetrahedron beam computed tomography (TBCT). System characteristics are analyzed or optimized reconstruction methods are proposed for these imaging modalities. In the first part, we investigated the unique properties of propagation-based phase-contrast imaging technique when combined with the X-ray tomosynthesis. Fourier slice theorem implies that the high frequency components collected in the tomosynthesis data can be more reliably reconstructed. It is observed that the fringes or boundary enhancement introduced by the phase-contrast effects can serve as an accurate indicator of the true depth position in the tomosynthesis in-plane image. In the second part, we derived a sub-space framework to reconstruct images from few-view D-XPCT data set. By introducing a proper mask, the high frequency contents of the image can be theoretically preserved in a certain region of interest. A two-step reconstruction strategy is developed to mitigate the risk of subtle structures being oversmoothed when the commonly used total-variation regularization is employed in the conventional iterative framework. In the thirt part, we proposed a practical method to improve the quantitative accuracy of the projection-based dual-energy material decomposition. It is demonstrated that applying a total-projection-length constraint along with the dual-energy measurements can achieve a stabilized numerical solution of the decomposition problem, thus overcoming the disadvantages of the conventional approach that was extremely sensitive to noise corruption. In the final part, we described the modified filtered backprojection and iterative image reconstruction algorithms specifically developed for TBCT. Special parallelization strategies are designed to facilitate the use of GPU computing, showing demonstrated capability of producing high quality reconstructed volumetric images with a super fast computational speed. For all the investigations mentioned above, both simulation and experimental studies have been conducted to demonstrate the feasibility and effectiveness of the proposed methodologies

    DEVELOPMENT AND CHARACTERIZATION OF A HIGH-ENERGY IN-LINE PHASE CONTRAST TOMOSYNTHESIS PROTOTYPE

    Get PDF
    Phase sensitive 3D imaging techniques have been an emerging field in x-ray imaging for two decades. Among them, in-line phase contrast tomosynthesis has been investigated with great potential for translation into clinical applications in the near future, due to combining the advantages of configuration simplicity, structural noise elimination and potentially low radiation dose delivery. The high-energy in-line phase contrast tomosynthesis technique developed and presented in this dissertation initiates this translational procedure by optimizing the imaging conditions, performing phase retrieval, offering opportunities to further reduce radiation dose delivery, improving detectability and specificity with the employment of auxiliary phase contrast agents, and potentially performing quantitative imaging. First, the high-energy in-line phase contrast tomosynthesis prototype was developed and characterized in this dissertation as the first of its kind following a number of engineering trade-off considerations. The quantitative results as well as the imaging results of tissue-simulating phantoms and biology-related phantoms demonstrate the extensive capability of this imaging prototype in improving tumor detectability. In addition, the optimization of the x-ray prime beam toward the PAD phase retrieval method proved the potential of high-energy imaging and predicated the solution toward imaging time reduction by employing photon counting based imaging techniques. In the past several years, applications of microbubbles as a phase contrast agent have shown the capability for image quality improvement in quantitative imaging. In this dissertation, a preliminary study of quantitative imaging of microbubbles using the in-line phase contrast projection mode imaging prototype, which is a system without tomosynthesis capability, provided a discussion on how the materials of the bubble shells and gas infills could impact the imaging capabilities and resulting image detectability. In addition, the results of the study provided a guideline for microbubble selections for in-line phase contrast mode imaging modalities. Based on this criterion discussed in the study, the albumin-shell microbubbles were selected as the phase contrast agent for the imaging prototype presented in this dissertation. The imaging results showed the feasibility of performing quantitative imaging by employing microbubbles as the auxiliary phase contrast agent. Clinical conditions were simulated by distributing microbubbles on the interface between two tissue-like phantom structures. The quantitative imaging results provided clinical motivation for translating phantom studies into more biology-related investigations providing radiation dose reductions in the future

    A New Stationary Digital Breast Tomosynthesis System: Implementation and Characterization

    Get PDF
    Digital breast tomosynthesis systems (DBT) use a single thermionic x-ray source that moves around the breast in a fixed angular span. As a result, all current DBT system requires the mechanical motion of the x-ray source during the scan, limiting image quality either due to the focal spot blurring or a long scan time. This causes an unfavorable reduction in the in-plane resolution compared to 2D mammography. Our research group developed and demonstrated a first generation stationary digital breast tomosynthesis (s-DBT) system that uses a linear carbon nanotube (CNT) x-ray source array. Since the stationary sources are not subject to focal spot blurring, and images can be acquired rapidly, the in-plane system resolution is improved. Additionally, image acquisition time is independent of angular span since there is no motion, allowing for large angular spans, and increased depth resolution. The improved resolution of the first generation s-DBT system over continuous motion (CM) DBT has been demonstrated with image evaluation phantoms and a human specimen study. The first generation s-DBT is currently undergoing clinical trials at the University of North Carolina Cancer Hospital. Limitations associated with the first generation system, such as limited tube flux, and limited x-ray energy, placed limitations on our clinical trials and future clinical implementation. Also, the limited angular span could be improved for increased depth resolution, as there is no cost on patient imaging time. The goal of this thesis work was to design construct and characterize a second generation s-DBT system, capable of faster image acquisition times, and higher depth resolution than our first generation system. The second generation s-DBT system was built using a newly designed distributed CNT x-ray source array. The system was then characterized and compared to the first generation system and two commercially available DBT systems. Using physical measurements that are used in medical imaging, the system showed significant improvement in resolution over the first generation system and both commercially available systems, coupled with equal or faster image acquisition times. A separate study investigating the feasibility of contrast enhanced (CE) imaging was conducted, where the system showed capability in both temporal subtraction (TS) and dual energy (DE) imaging.Doctor of Philosoph

    Image reconstruction and processing for stationary digital tomosynthesis systems

    Get PDF
    Digital tomosynthesis (DTS) is an emerging x-ray imaging technique for disease and cancer screening. DTS takes a small number of x-ray projections to generate pseudo-3D images, it has a lower radiation and a lower cost compared to the Computed Tomography (CT) and an improved diagnostic accuracy compared to the 2D radiography. Our research group has developed a carbon nanotube (CNT) based x-ray source. This technology enables packing multiple x-ray sources into one single x-ray source array. Based on this technology, our group built several stationary digital tomosynthesis (s-DTS) systems, which have a faster scanning time and no source motion blur. One critical step in both tomosynthesis and CT is image reconstruction, which generates a 3D image from the 2D measurement. For tomosynthesis, the conventional reconstruction method runs fast but fails in image quality. A better iterative method exists, however, it is too time-consuming to be used in clinics. The goal of this work is to develop fast iterative image reconstruction algorithm and other image processing techniques for the stationary digital tomosynthesis system, improving the image quality affected by the hardware limitation. Fast iterative reconstruction algorithm, named adapted fan volume reconstruction (AFVR), was developed for the s-DTS. AFVR is shown to be an order of magnitude faster than the current iterative reconstruction algorithms and produces better images over the classical filtered back projection (FBP) method. AFVR was implemented for the stationary digital breast tomosynthesis system (s-DBT), the stationary digital chest tomosynthesis system (s-DCT) and the stationary intraoral dental tomosynthesis system (s-IOT). Next, scatter correction technique for stationary digital tomosynthesis was investigated. A new algorithm for estimating scatter profile was developed, which has been shown to improve the image quality substantially. Finally, the quantitative imaging was investigated, where the s-DCT system was used to assess the coronary artery calcium score.Doctor of Philosoph

    Investigation of physical processes in digital x-ray tomosynthesis imaging of the breast

    Get PDF
    Early detection is one of the most important factors in the survival of patients diagnosed with breast cancer. For this reason the development of improved screening mammography methods is one of primary importance. One problem that is present in standard planar mammography, which is not solved with the introduction of digital mammography, is the possible masking of lesions by normal breast tissue because of the inherent collapse of three-dimensional anatomy into a two-dimensional image. Digital tomosynthesis imaging has the potential to avoid this effect by incorporating into the acquired image information on the vertical position of the features present in the breast. Previous studies have shown that at an approximately equivalent dose, the contrast-detail trends of several tomosynthesis methods are better than those of planar mammography. By optimizing the image acquisition parameters and the tomosynthesis reconstruction algorithm, it is believed that a tomosynthesis imaging system can be developed that provides more information on the presence of lesions while maintaining or reducing the dose to the patient. Before this imaging methodology can be translated to routine clinical use, a series of issues and concerns related to tomosynthesis imaging must be addressed. This work investigates the relevant physical processes to improve our understanding and enable the introduction of this tomographic imaging method to the realm of clinical breast imaging. The processes investigated in this work included the dosimetry involved in tomosynthesis imaging, x-ray scatter in the projection images, imaging system performance, and acquisition geometry. A comprehensive understanding of the glandular dose to the breast during tomosynthesis imaging, as well as the dose distribution to most of the radiosensitive tissues in the body from planar mammography, tomosynthesis and dedicated breast computed tomography was gained. The analysis of the behavior of x-ray scatter in tomosynthesis yielded an in-depth characterization of the variation of this effect in the projection images. Finally, the theoretical modeling of a tomosynthesis imaging system, combined with the other results of this work was used to find the geometrical parameters that maximize the quality of the tomosynthesis reconstruction.Ph.D.Andrew Karellas, John N. Oshinski, Xiaoping P. Hu, Carl J. D’Orsi and Ernest V. Garci

    TOMOGRAPHIC IMAGE RECONSTRUCTION: IMPLEMENTATION, OPTIMIZATION AND COMPARISON IN DIGITAL BREAST TOMOSYNTHESIS

    Get PDF
    Conventional 2D mammography was the most effective approach to detecting early stage breast cancer in the past decades of years. Tomosynthetic breast imaging is a potentially more valuable 3D technique for breast cancer detection. The limitations of current tomosynthesis systems include a longer scanning time than a conventional digital X-ray modality and a low spatial resolution due to the movement of the single X-ray source. Dr.Otto Zhou\u27s group proposed the concept of stationary digital breast tomosynthesis (s-DBT) using a Carbon Nano-Tube (CNT) based X-ray source array. Instead of mechanically moving a single X-ray tube, s-DBT applies a stationary X-ray source array, which generates X-ray beams from different view angles by electronically activating the individual source prepositioned at the corresponding view angle, therefore eliminating the focal spot motion blurring from sources. The scanning speed is determined only by the detector readout time and the number of sources regardless of the angular coverage spans, such that the blur from patient\u27s motion can be reduced due to the quick scan. S-DBT is potentially a promising modality to improve the early breast cancer detection by providing decent image quality with fast scan and low radiation dose. DBT system acquires a limited number of noisy 2D projections over a limited angular range and then mathematically reconstructs a 3D breast. 3D reconstruction is faced with the challenges of cone-beam and flat-panel geometry, highly incomplete sampling and huge reconstructed volume. In this research, we investigated several representative reconstruction methods such as Filtered backprojection method (FBP), Simultaneous algebraic reconstruction technique (SART) and Maximum likelihood (ML). We also compared our proposed statistical iterative reconstruction (IR) with particular prior and computational technique to these representative methods. Of all available reconstruction methods in this research, our proposed statistical IR appears particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description. In the following chapters, we present multiple key techniques of statistical IR to tomosynthesis imaging data to demonstrate significant image quality improvement over conventional techniques. These techniques include the physical modeling with a local voxel-pair based prior with the flexibility in its parameters to fine-tune image quality, the pre-computed parameter Îş incorporated with the prior to remove the data dependence and to achieve a predictable resolution property, an effective ray-driven technique to compute the forward and backprojection and an over-sampled ray-driven method to perform high resolution reconstruction with a practical region of interest (ROI) technique. In addition, to solve the estimation problem with a fast computation, we also present a semi-quantitative method to optimize the relaxation parameter in a relaxed order-subsets framework and an optimization transfer based algorithm framework which potentially allows less iterations to achieve an acceptable convergence. The phantom data is acquired with the s-DBT prototype system to assess the performance of these particular techniques and compare our proposed method to those representatives. The value of IR is demonstrated in improving the detectability of low contrast and tiny micro-calcification, in reducing cross plane artifacts, in improving resolution and lowering noise in reconstructed images. In particular, noise power spectrum analysis (NPS) indicates a superior noise spectral property of our proposed statistical IR, especially in the high frequency range. With the decent noise property, statistical IR also provides a remarkable reconstruction MTF in general and in different areas within a focus plane. Although computational load remains a significant challenge for practical development, combined with the advancing computational techniques such as graphic computing, the superior image quality provided by statistical IR will be realized to benefit the diagnostics in real clinical applications

    Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis: IR to improve IQ for DBT

    Get PDF
    Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data

    Evaluation of a diffraction-enhanced imaging (DEI) prototype and exploration of novel applications for clinical implementation of DEI

    Get PDF
    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted, scattered, or refracted x-rays. Diffraction-enhanced imaging (DEI) allows for increased contrast with decreased radiation dose compared to conventional mammographic imaging due to monochromatic x-rays, its unique refraction-based contrast mechanism, and excellent scatter rejection. Although laboratory breast imaging studies have demonstrated excellent breast imaging, important clinical translation and application studies are needed before the DEI system can be established as a useful breast imaging modality. This dissertation focuses on several important studies toward the development of a clinical DEI system. First, contrast-enhanced DEI was explored using commercially available contrast agents. Phantoms were imaged at a range of x-ray energies and relevant contrast agent concentrations. Second, we performed a reader study to determine if superior DEI contrast mechanisms preserve image quality as tissue thickness increases. Breast specimens were imaged at several thicknesses, and radiologist perception of lesion visibility was recorded. Lastly, a prototype DEI system utilizing an x-ray tube source was evaluated through a reader study. Breast tissue specimens were imaged on the traditional and prototype DEI systems, and expert radiologists evaluated image quality and pathology correlation. This dissertation will demonstrate proof-of-principle for contrast-enhanced DEI, establishing the feasibility of contrast-enhanced DEI using commercially available contrast agents. Further, it will show that DEI might be able to reduce breast compression, and thus the perception of pain during mammography, without significantly decreasing breast lesion visibility. Finally, this research shows the successful implementation of a DEI prototype, displaying breast features with approximately statistically equivalent visibility to the traditional DEI system. Together, this research is an important step toward the clinical translation of DEI, a technology with the potential to facilitate early breast cancer detection and diagnosis
    • …
    corecore