1,555 research outputs found

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund

    Advances in Manipulation and Recognition of Digital Ink

    Get PDF
    Handwriting is one of the most natural ways for a human to record knowledge. Recently, this type of human-computer interaction has received increasing attention due to the rapid evolution of touch-based hardware and software. While hardware support for digital ink reached its maturity, algorithms for recognition of handwriting in certain domains, including mathematics, are lacking robustness. Simultaneously, users may possess several pen-based devices and sharing of training data in adaptive recognition setting can be challenging. In addition, resolution of pen-based devices keeps improving making the ink cumbersome to process and store. This thesis develops several advances for efficient processing, storage and recognition of handwriting, which are applicable to the classification methods based on functional approximation. In particular, we propose improvements to classification of isolated characters and groups of rotated characters, as well as symbols of substantially different size. We then develop an algorithm for adaptive classification of handwritten mathematical characters of a user. The adaptive algorithm can be especially useful in the cloud-based recognition framework, which is described further in the thesis. We investigate whether the training data available in the cloud can be useful to a new writer during the training phase by extracting styles of individuals with similar handwriting and recommending styles to the writer. We also perform factorial analysis of the algorithm for recognition of n-grams of rotated characters. Finally, we show a fast method for compression of linear pieces of handwritten strokes and compare it with an enhanced version of the algorithm based on functional approximation of strokes. Experimental results demonstrate validity of the theoretical contributions, which form a solid foundation for the next generation handwriting recognition systems

    DEFORM'06 - Proceedings of the Workshop on Image Registration in Deformable Environments

    Get PDF
    Preface These are the proceedings of DEFORM'06, the Workshop on Image Registration in Deformable Environments, associated to BMVC'06, the 17th British Machine Vision Conference, held in Edinburgh, UK, in September 2006. The goal of DEFORM'06 was to bring together people from different domains having interests in deformable image registration. In response to our Call for Papers, we received 17 submissions and selected 8 for oral presentation at the workshop. In addition to the regular papers, Andrew Fitzgibbon from Microsoft Research Cambridge gave an invited talk at the workshop. The conference website including online proceedings remains open, see http://comsee.univ-bpclermont.fr/events/DEFORM06. We would like to thank the BMVC'06 co-chairs, Mike Chantler, Manuel Trucco and especially Bob Fisher for is great help in the local arrangements, Andrew Fitzgibbon, and the Programme Committee members who provided insightful reviews of the submitted papers. Special thanks go to Marc Richetin, head of the CNRS Research Federation TIMS, which sponsored the workshop. August 2006 Adrien Bartoli Nassir Navab Vincent Lepeti

    Kernel-Based Data Mining Approach with Variable Selection for Nonlinear High-Dimensional Data

    Get PDF
    In statistical data mining research, datasets often have nonlinearity and high-dimensionality. It has become difficult to analyze such datasets in a comprehensive manner using traditional statistical methodologies. Kernel-based data mining is one of the most effective statistical methodologies to investigate a variety of problems in areas including pattern recognition, machine learning, bioinformatics, chemometrics, and statistics. In particular, statistically-sophisticated procedures that emphasize the reliability of results and computational efficiency are required for the analysis of high-dimensional data. In this dissertation, first, a novel wrapper method called SVM-ICOMP-RFE based on hybridized support vector machine (SVM) and recursive feature elimination (RFE) with information-theoretic measure of complexity (ICOMP) is introduced and developed to classify high-dimensional data sets and to carry out subset selection of the variables in the original data space for finding the best for discriminating between groups. Recursive feature elimination (RFE) ranks variables based on the information-theoretic measure of complexity (ICOMP) criterion. Second, a dual variables functional support vector machine approach is proposed. The proposed approach uses both the first and second derivatives of the degradation profiles. The modified floating search algorithm for the repeated variable selection, with newly-added degradation path points, is presented to find a few good variables while reducing the computation time for on-line implementation. Third, a two-stage scheme for the classification of near infrared (NIR) spectral data is proposed. In the first stage, the proposed multi-scale vertical energy thresholding (MSVET) procedure is used to reduce the dimension of the high-dimensional spectral data. In the second stage, a few important wavelet coefficients are selected using the proposed SVM gradient-recursive feature elimination (RFE). Fourth, a novel methodology based on a human decision making process for discriminant analysis called PDCM is proposed. The proposed methodology consists of three basic steps emulating the thinking process: perception, decision, and cognition. In these steps two concepts known as support vector machines for classification and information complexity are integrated to evaluate learning models
    corecore