7,767 research outputs found

    Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    Full text link
    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency, and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey furthermore a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled---provided the decay of temporal correlations is sufficiently well-resolved---within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise, are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.Comment: 26 pages, double columns; 15 figure

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train
    • …
    corecore