653 research outputs found

    Authentication Solutions in Industrial Internet of Things: A Survey

    Get PDF
    With the rapid growth of industry 4.0, the Industrial Internet of Things (IIoT) is considered to be a promising solution for converting normal operations to ‘smart’ operations in industrial sectors and systems. The well-known characteristics of IIoT has greatly improved the productivity and quality of many industrial sectors. IIoT allows the connectivity of many industrial smart devices such as, sensors, actuators and gateways. The connectivity feature makes this critical environment vulnerable to various cybersecurity attacks. Subsequently, maintaining the security of IIoT sys-tems remains a challenge to ensure their success. In particular, authenticating the connected IIoT devices is a must to ensure that they can be trusted and prevent any malicious attempts. Hence, the objective of this survey is to overview, discuss and analyze the different solutions related to de-vice authentication in the domain of IIoT. Also, we analyze the IIoT environment in terms of characteristics, architecture and security requirements. Similarly, we highlight the role of (machine-to-machine) M2M communication in IIoT. We further contribute to this survey by outlining several open issues that must be considered when designing authentication schemes for IIoT. Fi-nally, we highlight a number of research directions and open challenges

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC

    Differential Privacy for Industrial Internet of Things: Opportunities, Applications and Challenges

    Get PDF
    The development of Internet of Things (IoT) brings new changes to various fields. Particularly, industrial Internet of Things (IIoT) is promoting a new round of industrial revolution. With more applications of IIoT, privacy protection issues are emerging. Specially, some common algorithms in IIoT technology such as deep models strongly rely on data collection, which leads to the risk of privacy disclosure. Recently, differential privacy has been used to protect user-terminal privacy in IIoT, so it is necessary to make in-depth research on this topic. In this paper, we conduct a comprehensive survey on the opportunities, applications and challenges of differential privacy in IIoT. We firstly review related papers on IIoT and privacy protection, respectively. Then we focus on the metrics of industrial data privacy, and analyze the contradiction between data utilization for deep models and individual privacy protection. Several valuable problems are summarized and new research ideas are put forward. In conclusion, this survey is dedicated to complete comprehensive summary and lay foundation for the follow-up researches on industrial differential privacy

    Trustworthy Federated Learning: A Survey

    Full text link
    Federated Learning (FL) has emerged as a significant advancement in the field of Artificial Intelligence (AI), enabling collaborative model training across distributed devices while maintaining data privacy. As the importance of FL increases, addressing trustworthiness issues in its various aspects becomes crucial. In this survey, we provide an extensive overview of the current state of Trustworthy FL, exploring existing solutions and well-defined pillars relevant to Trustworthy . Despite the growth in literature on trustworthy centralized Machine Learning (ML)/Deep Learning (DL), further efforts are necessary to identify trustworthiness pillars and evaluation metrics specific to FL models, as well as to develop solutions for computing trustworthiness levels. We propose a taxonomy that encompasses three main pillars: Interpretability, Fairness, and Security & Privacy. Each pillar represents a dimension of trust, further broken down into different notions. Our survey covers trustworthiness challenges at every level in FL settings. We present a comprehensive architecture of Trustworthy FL, addressing the fundamental principles underlying the concept, and offer an in-depth analysis of trust assessment mechanisms. In conclusion, we identify key research challenges related to every aspect of Trustworthy FL and suggest future research directions. This comprehensive survey serves as a valuable resource for researchers and practitioners working on the development and implementation of Trustworthy FL systems, contributing to a more secure and reliable AI landscape.Comment: 45 Pages, 8 Figures, 9 Table
    • …
    corecore