1,896 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    BlogForever: D2.5 Weblog Spam Filtering Report and Associated Methodology

    Get PDF
    This report is written as a first attempt to define the BlogForever spam detection strategy. It comprises a survey of weblog spam technology and approaches to their detection. While the report was written to help identify possible approaches to spam detection as a component within the BlogForver software, the discussion has been extended to include observations related to the historical, social and practical value of spam, and proposals of other ways of dealing with spam within the repository without necessarily removing them. It contains a general overview of spam types, ready-made anti-spam APIs available for weblogs, possible methods that have been suggested for preventing the introduction of spam into a blog, and research related to spam focusing on those that appear in the weblog context, concluding in a proposal for a spam detection workflow that might form the basis for the spam detection component of the BlogForever software

    Intelligent Security for Phishing Online using Adaptive Neuro Fuzzy Systems

    Get PDF
    Anti-phishing detection solutions employed in industry use blacklist-based approaches to achieve low false-positive rates, but blacklist approaches utilizes website URLs only. This study analyses and combines phishing emails and phishing web-forms in a single framework, which allows feature extraction and feature model construction. The outcome should classify between phishing, suspicious, legitimate and detect emerging phishing attacks accurately. The intelligent phishing security for online approach is based on machine learning techniques, using Adaptive Neuro-Fuzzy Inference System and a combination sources from which features are extracted. An experiment was performed using two-fold cross validation method to measure the system’s accuracy. The intelligent phishing security approach achieved a higher accuracy. The finding indicates that the feature model from combined sources can detect phishing websites with a higher accuracy. This paper contributes to phishing field a combined feature which sources in a single framework. The implication is that phishing attacks evolve rapidly; therefore, regular updates and being ahead of phishing strategy is the way forward

    An analysis of fusing advanced malware email protection logs, malware intelligence and active directory attributes as an instrument for threat intelligence

    Get PDF
    After more than four decades email is still the most widely used electronic communication medium today. This electronic communication medium has evolved into an electronic weapon of choice for cyber criminals ranging from the novice to the elite. As cyber criminals evolve with tools, tactics and procedures, so too are technology vendors coming forward with a variety of advanced malware protection systems. However, even if an organization adopts such a system, there is still the daily challenge of interpreting the log data and understanding the type of malicious email attack, including who the target was and what the payload was. This research examines a six month data set obtained from an advanced malware email protection system from a bank in South Africa. Extensive data fusion techniques are used to provide deeper insight into the data by blending these with malware intelligence and business context. The primary data set is fused with malware intelligence to identify the different malware families associated with the samples. Active Directory attributes such as the business cluster, department and job title of users targeted by malware are also fused into the combined data. This study provides insight into malware attacks experienced in the South African financial services sector. For example, most of the malware samples identified belonged to different types of ransomware families distributed by known botnets. However, indicators of targeted attacks were observed based on particular employees targeted with exploit code and specific strains of malware. Furthermore, a short time span between newly discovered vulnerabilities and the use of malicious code to exploit such vulnerabilities through email were observed in this study. The fused data set provided the context to answer the “who”, “what”, “where” and “when”. The proposed methodology can be applied to any organization to provide insight into the malware threats identified by advanced malware email protection systems. In addition, the fused data set provides threat intelligence that could be used to strengthen the cyber defences of an organization against cyber threats
    • 

    corecore