480 research outputs found

    Offline and online power aware resource allocation algorithms with migration and delay constraints

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In order to handle advanced mobile broadband services and Internet of Things (IoT), future Internet and 5G networks are expected to leverage the use of network virtualization, be much faster, have greater capacities, provide lower latencies, and significantly be power efficient than current mobile technologies. Therefore, this paper proposes three power aware algorithms for offline, online, and migration applications, solving the resource allocation problem within the frameworks of network function virtualization (NFV) environments in fractions of a second. The proposed algorithms target minimizing the total costs and power consumptions in the physical network through sufficiently allocating the least physical resources to host the demands of the virtual network services, and put into saving mode all other not utilized physical components. Simulations and evaluations of the offline algorithm compared to the state-of-art resulted on lower total costs by 32%. In addition to that, the online algorithm was tested through four different experiments, and the results argued that the overall power consumption of the physical network was highly dependent on the demands’ lifetimes, and the strictness of the required end-to-end delay. Regarding migrations during online, the results concluded that the proposed algorithms would be most effective when applied for maintenance and emergency conditions.Peer ReviewedPreprin

    Data Center Based on Cloud Computing Technology

    Get PDF
    With the rapid development of Internet applications, the impact on the development of data centers is huge. Domestic data centers attach great importance to the acceptance of cloud computing technology and the construction of application systems. Nowadays, data centers can be effectively transformed into cloud computing development. The operating support environment has become the main consideration and focus of today’s data center development. Under the concept of cloud computing, this article analyzes and builds a new data center that is more in line with the needs of resource management and information construction. Taking the development of data centers based on cloud computing technology as the research object, building data centers through cloud computing technology realizes the acquisition and organization of data and makes full use of resources. A new information resource management system with functions such as classification and query of data, overall processing and analysis of data, backup of data, information management and services has been realized. Before using the cloud computing model, the network deployed a total of 40 virtual servers, and the average CPU utilization rate was less than 40%. Since the establishment of the data center model in this article, the utilization rate of the processor has stabilized at around 95%. Therefore, the data center proposed in this paper greatly improves the utilization of data and speeds up the overall construction of the data center

    Holistic Resource Management for Sustainable and Reliable Cloud Computing:An Innovative Solution to Global Challenge

    Get PDF
    Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. These two objectives can present a potential conflict within cloud resource management decision making that must balance between service consolidation and replication to minimize energy consumption whilst maximizing server availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively without affecting other Quality of Service parameters

    A Literature Survey on Resource Management Techniques, Issues and Challenges in Cloud Computing

    Get PDF
    Cloud computing is a large scale distributed computing which provides on demand services for clients. Cloud Clients use web browsers, mobile apps, thin clients, or terminal emulators to request and control their cloud resources at any time and anywhere through the network. As many companies are shifting their data to cloud and as many people are being aware of the advantages of storing data to cloud, there is increasing number of cloud computing infrastructure and large amount of data which lead to the complexity management for cloud providers. We surveyed the state-of-the-art resource management techniques for IaaS (infrastructure as a service) in cloud computing. Then we put forward different major issues in the deployment of the cloud infrastructure in order to avoid poor service delivery in cloud computing

    Energy-Efficient, Thermal-Aware Modeling and Simulation of Datacenters: The CoolEmAll Approach and Evaluation Results

    Get PDF
    International audienceThis paper describes the CoolEmAll project and its approach for modeling and simulating energy-efficient and thermal-aware data centers. The aim of the project was to address energy-thermal efficiency of data centers by combining the optimization of IT, cooling and workload management. This paper provides a complete data center model considering the workload profiles, the applications profiling, the power model and a cooling model. Different energy efficiency metrics are proposed and various resource management and scheduling policies are presented. The proposed strategies are validated through simulation at different levels of a data cente
    • …
    corecore