37 research outputs found

    Physics-based Shading Reconstruction for Intrinsic Image Decomposition

    Get PDF
    We investigate the use of photometric invariance and deep learning to compute intrinsic images (albedo and shading). We propose albedo and shading gradient descriptors which are derived from physics-based models. Using the descriptors, albedo transitions are masked out and an initial sparse shading map is calculated directly from the corresponding RGB image gradients in a learning-free unsupervised manner. Then, an optimization method is proposed to reconstruct the full dense shading map. Finally, we integrate the generated shading map into a novel deep learning framework to refine it and also to predict corresponding albedo image to achieve intrinsic image decomposition. By doing so, we are the first to directly address the texture and intensity ambiguity problems of the shading estimations. Large scale experiments show that our approach steered by physics-based invariant descriptors achieve superior results on MIT Intrinsics, NIR-RGB Intrinsics, Multi-Illuminant Intrinsic Images, Spectral Intrinsic Images, As Realistic As Possible, and competitive results on Intrinsic Images in the Wild datasets while achieving state-of-the-art shading estimations.Comment: Submitted to Computer Vision and Image Understanding (CVIU

    Statistical Approaches to Inferring Object Shape from Single Images

    Get PDF
    Depth inference is a fundamental problem of computer vision with a broad range of potential applications. Monocular depth inference techniques, particularly shape from shading dates back to as early as the 40's when it was first used to study the shape of the lunar surface. Since then there has been ample research to develop depth inference algorithms using monocular cues. Most of these are based on physical models of image formation and rely on a number of simplifying assumptions that do not hold for real world and natural imagery. Very few make use of the rich statistical information contained in real world images and their 3D information. There have been a few notable exceptions though. The study of statistics of natural scenes has been concentrated on outdoor scenes which are cluttered. Statistics of scenes of single objects has been less studied, but is an essential part of daily human interaction with the environment. Inferring shape of single objects is a very important computer vision problem which has captured the interest of many researchers over the past few decades and has applications in object recognition, robotic grasping, fault detection and Content Based Image Retrieval (CBIR). This thesis focuses on studying the statistical properties of single objects and their range images which can benefit shape inference techniques. I acquired two databases: Single Object Range and HDR (SORH) and the Eton Myers Database of single objects, including laser-acquired depth, binocular stereo, photometric stereo and High Dynamic Range (HDR) photography. I took a data driven approach and studied the statistics of color and range images of real scenes of single objects along with whole 3D objects and uncovered some interesting trends in the data. The fractal structure of natural images was previously well known, and thought to be a universal property. However, my research showed that the fractal structure of single objects and surfaces is governed by a wholly different set of rules. Classical computer vision problems of binocular and multi-view stereo, photometric stereo, shape from shading, structure from motion, and others, all rely on accurate and complete models of which 3D shapes and textures are plausible in nature, to avoid producing unlikely outputs. Bayesian approaches are common for these problems, and hopefully the findings on the statistics of the shape of single objects from this work and others will both inform new and more accurate Bayesian priors on shape, and also enable more efficient probabilistic inference procedures

    Scene-Dependency of Spatial Image Quality Metrics

    Get PDF
    This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality. The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance “scene-dependent” and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance “in the field” (i.e. capturing real scenes). Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals. This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPDNPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs. The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy. The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore