778 research outputs found

    BOOLEAN AND BRAIN-INSPIRED COMPUTING USING SPIN-TRANSFER TORQUE DEVICES

    Get PDF
    Several completely new approaches (such as spintronic, carbon nanotube, graphene, TFETs, etc.) to information processing and data storage technologies are emerging to address the time frame beyond current Complementary Metal-Oxide-Semiconductor (CMOS) roadmap. The high speed magnetization switching of a nano-magnet due to current induced spin-transfer torque (STT) have been demonstrated in recent experiments. Such STT devices can be explored in compact, low power memory and logic design. In order to truly leverage STT devices based computing, researchers require a re-think of circuit, architecture, and computing model, since the STT devices are unlikely to be drop-in replacements for CMOS. The potential of STT devices based computing will be best realized by considering new computing models that are inherently suited to the characteristics of STT devices, and new applications that are enabled by their unique capabilities, thereby attaining performance that CMOS cannot achieve. The goal of this research is to conduct synergistic exploration in architecture, circuit and device levels for Boolean and brain-inspired computing using nanoscale STT devices. Specifically, we first show that the non-volatile STT devices can be used in designing configurable Boolean logic blocks. We propose a spin-memristor threshold logic (SMTL) gate design, where memristive cross-bar array is used to perform current mode summation of binary inputs and the low power current mode spintronic threshold device carries out the energy efficient threshold operation. Next, for brain-inspired computing, we have exploited different spin-transfer torque device structures that can implement the hard-limiting and soft-limiting artificial neuron transfer functions respectively. We apply such STT based neuron (or ‘spin-neuron’) in various neural network architectures, such as hierarchical temporal memory and feed-forward neural network, for performing “human-like” cognitive computing, which show more than two orders of lower energy consumption compared to state of the art CMOS implementation. Finally, we show the dynamics of injection locked Spin Hall Effect Spin-Torque Oscillator (SHE-STO) cluster can be exploited as a robust multi-dimensional distance metric for associative computing, image/ video analysis, etc. Our simulation results show that the proposed system architecture with injection locked SHE-STOs and the associated CMOS interface circuits can be suitable for robust and energy efficient associative computing and pattern matching

    Reliable Low-Power High Performance Spintronic Memories

    Get PDF
    Moores Gesetz folgend, ist es der Chipindustrie in den letzten fĂŒnf Jahrzehnten gelungen, ein explosionsartiges Wachstum zu erreichen. Dies hatte ebenso einen exponentiellen Anstieg der Nachfrage von Speicherkomponenten zur Folge, was wiederum zu speicherlastigen Chips in den heutigen Computersystemen fĂŒhrt. Allerdings stellen traditionelle on-Chip Speichertech- nologien wie Static Random Access Memories (SRAMs), Dynamic Random Access Memories (DRAMs) und Flip-Flops eine Herausforderung in Bezug auf Skalierbarkeit, Verlustleistung und ZuverlĂ€ssigkeit dar. Eben jene Herausforderungen und die ĂŒberwĂ€ltigende Nachfrage nach höherer Performanz und Integrationsdichte des on-Chip Speichers motivieren Forscher, nach neuen nichtflĂŒchtigen Speichertechnologien zu suchen. Aufkommende spintronische Spe- ichertechnologien wie Spin Orbit Torque (SOT) und Spin Transfer Torque (STT) erhielten in den letzten Jahren eine hohe Aufmerksamkeit, da sie eine Reihe an Vorteilen bieten. Dazu gehören NichtflĂŒchtigkeit, Skalierbarkeit, hohe BestĂ€ndigkeit, CMOS KompatibilitĂ€t und Unan- fĂ€lligkeit gegenĂŒber Soft-Errors. In der Spintronik reprĂ€sentiert der Spin eines Elektrons dessen Information. Das Datum wird durch die Höhe des Widerstandes gespeichert, welche sich durch das Anlegen eines polarisierten Stroms an das Speichermedium verĂ€ndern lĂ€sst. Das Prob- lem der statischen Leistung gehen die SpeichergerĂ€te sowohl durch deren verlustleistungsfreie Eigenschaft, als auch durch ihr Standard- Aus/Sofort-Ein Verhalten an. Nichtsdestotrotz sind noch andere Probleme, wie die hohe Zugriffslatenz und die Energieaufnahme zu lösen, bevor sie eine verbreitete Anwendung finden können. Um diesen Problemen gerecht zu werden, sind neue Computerparadigmen, -architekturen und -entwurfsphilosophien notwendig. Die hohe Zugriffslatenz der Spintroniktechnologie ist auf eine vergleichsweise lange Schalt- dauer zurĂŒckzufĂŒhren, welche die von konventionellem SRAM ĂŒbersteigt. Des Weiteren ist auf Grund des stochastischen Schaltvorgangs der Speicherzelle und des Einflusses der Prozessvari- ation ein nicht zu vernachlĂ€ssigender Zeitraum dafĂŒr erforderlich. In diesem Zeitraum wird ein konstanter Schreibstrom durch die Bitzelle geleitet, um den Schaltvorgang zu gewĂ€hrleisten. Dieser Vorgang verursacht eine hohe Energieaufnahme. FĂŒr die Leseoperation wird gleicher- maßen ein beachtliches Zeitfenster benötigt, ebenfalls bedingt durch den Einfluss der Prozess- variation. Dem gegenĂŒber stehen diverse ZuverlĂ€ssigkeitsprobleme. Dazu gehören unter An- derem die Leseintereferenz und andere Degenerationspobleme, wie das des Time Dependent Di- electric Breakdowns (TDDB). Diese ZuverlĂ€ssigkeitsprobleme sind wiederum auf die benötigten lĂ€ngeren Schaltzeiten zurĂŒckzufĂŒhren, welche in der Folge auch einen ĂŒber lĂ€ngere Zeit an- liegenden Lese- bzw. Schreibstrom implizieren. Es ist daher notwendig, sowohl die Energie, als auch die Latenz zur Steigerung der ZuverlĂ€ssigkeit zu reduzieren, um daraus einen potenziellen Kandidaten fĂŒr ein on-Chip Speichersystem zu machen. In dieser Dissertation werden wir Entwurfsstrategien vorstellen, welche das Ziel verfolgen, die Herausforderungen des Cache-, Register- und Flip-Flop-Entwurfs anzugehen. Dies erre- ichen wir unter Zuhilfenahme eines Cross-Layer Ansatzes. FĂŒr Caches entwickelten wir ver- schiedene AnsĂ€tze auf Schaltkreisebene, welche sowohl auf der Speicherarchitekturebene, als auch auf der Systemebene in Bezug auf Energieaufnahme, Performanzsteigerung und Zuver- lĂ€ssigkeitverbesserung evaluiert werden. Wir entwickeln eine Selbstabschalttechnik, sowohl fĂŒr die Lese-, als auch die Schreiboperation von Caches. Diese ist in der Lage, den Abschluss der entsprechenden Operation dynamisch zu ermitteln. Nachdem der Abschluss erkannt wurde, wird die Lese- bzw. Schreiboperation sofort gestoppt, um Energie zu sparen. ZusĂ€tzlich limitiert die Selbstabschalttechnik die Dauer des Stromflusses durch die Speicherzelle, was wiederum das Auftreten von TDDB und Leseinterferenz bei Schreib- bzw. Leseoperationen re- duziert. Zur Verbesserung der Schreiblatenz heben wir den Schreibstrom an der Bitzelle an, um den magnetischen Schaltprozess zu beschleunigen. Um registerbankspezifische Anforderungen zu berĂŒcksichtigen, haben wir zusĂ€tzlich eine Multiport-Speicherarchitektur entworfen, welche eine einzigartige Eigenschaft der SOT-Zelle ausnutzt, um simultan Lese- und Schreiboperatio- nen auszufĂŒhren. Es ist daher möglich Lese/Schreib- Konfilkte auf Bitzellen-Ebene zu lösen, was sich wiederum in einer sehr viel einfacheren Multiport- Registerbankarchitektur nieder- schlĂ€gt. ZusĂ€tzlich zu den SpeicheransĂ€tzen haben wir ebenfalls zwei Flip-Flop-Architekturen vorgestellt. Die erste ist eine nichtflĂŒchtige non-Shadow Flip-Flop-Architektur, welche die Speicherzelle als aktive Komponente nutzt. Dies ermöglicht das sofortige An- und Ausschalten der Versorgungss- pannung und ist daher besonders gut fĂŒr aggressives Powergating geeignet. Alles in Allem zeigt der vorgestellte Flip-Flop-Entwurf eine Ă€hnliche Timing-Charakteristik wie die konventioneller CMOS Flip-Flops auf. Jedoch erlaubt er zur selben Zeit eine signifikante Reduktion der statis- chen Leistungsaufnahme im Vergleich zu nichtflĂŒchtigen Shadow- Flip-Flops. Die zweite ist eine fehlertolerante Flip-Flop-Architektur, welche sich unanfĂ€llig gegenĂŒber diversen Defekten und Fehlern verhĂ€lt. Die LeistungsfĂ€higkeit aller vorgestellten Techniken wird durch ausfĂŒhrliche Simulationen auf Schaltkreisebene verdeutlicht, welche weiter durch detaillierte Evaluationen auf Systemebene untermauert werden. Im Allgemeinen konnten wir verschiedene Techniken en- twickeln, die erhebliche Verbesserungen in Bezug auf Performanz, Energie und ZuverlĂ€ssigkeit von spintronischen on-Chip Speichern, wie Caches, Register und Flip-Flops erreichen
    • 

    corecore