19,766 research outputs found

    A Machine Learning Based Analytical Framework for Semantic Annotation Requirements

    Full text link
    The Semantic Web is an extension of the current web in which information is given well-defined meaning. The perspective of Semantic Web is to promote the quality and intelligence of the current web by changing its contents into machine understandable form. Therefore, semantic level information is one of the cornerstones of the Semantic Web. The process of adding semantic metadata to web resources is called Semantic Annotation. There are many obstacles against the Semantic Annotation, such as multilinguality, scalability, and issues which are related to diversity and inconsistency in content of different web pages. Due to the wide range of domains and the dynamic environments that the Semantic Annotation systems must be performed on, the problem of automating annotation process is one of the significant challenges in this domain. To overcome this problem, different machine learning approaches such as supervised learning, unsupervised learning and more recent ones like, semi-supervised learning and active learning have been utilized. In this paper we present an inclusive layered classification of Semantic Annotation challenges and discuss the most important issues in this field. Also, we review and analyze machine learning applications for solving semantic annotation problems. For this goal, the article tries to closely study and categorize related researches for better understanding and to reach a framework that can map machine learning techniques into the Semantic Annotation challenges and requirements

    A lightweight web video model with content and context descriptions for integration with linked data

    Get PDF
    The rapid increase of video data on the Web has warranted an urgent need for effective representation, management and retrieval of web videos. Recently, many studies have been carried out for ontological representation of videos, either using domain dependent or generic schemas such as MPEG-7, MPEG-4, and COMM. In spite of their extensive coverage and sound theoretical grounding, they are yet to be widely used by users. Two main possible reasons are the complexities involved and a lack of tool support. We propose a lightweight video content model for content-context description and integration. The uniqueness of the model is that it tries to model the emerging social context to describe and interpret the video. Our approach is grounded on exploiting easily extractable evolving contextual metadata and on the availability of existing data on the Web. This enables representational homogeneity and a firm basis for information integration among semantically-enabled data sources. The model uses many existing schemas to describe various ontology classes and shows the scope of interlinking with the Linked Data cloud

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    Get PDF
    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three capabilities together. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. NaviCell combines three features: (1) efficient map browsing based on Google Maps engine; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting the community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of their interest in the context of signaling pathways and cross-talks between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive fashion due to an imbedded blogging system. NaviCell provides an easy way to explore large-scale maps of molecular interactions, thanks to the Google Maps and WordPress interfaces, already familiar to many users. Semantic zooming used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization meaningful to the user. In addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte

    Modelling Discourse-related terminology in OntoLingAnnot’s ontologies

    Get PDF
    Recently, computational linguists have shown great interest in discourse annotation in an attempt to capture the internal relations in texts. With this aim, we have formalized the linguistic knowledge associated to discourse into different linguistic ontologies. In this paper, we present the most prominent discourse-related terms and concepts included in the ontologies of the OntoLingAnnot annotation model. They show the different units, values, attributes, relations, layers and strata included in the discourse annotation level of the OntoLingAnnot model, within which these ontologies are included, used and evaluated

    Ontology technology for the development and deployment of learning technology systems - a survey

    Get PDF
    The World-Wide Web is undergoing dramatic changes at the moment. The Semantic Web is an initiative to bring meaning to the Web. The Semantic Web is based on ontology technology – a knowledge representation framework – at its core. We illustrate the importance of this evolutionary development. We survey five scenarios demonstrating different forms of applications of ontology technologies in the development and deployment of learning technology systems. Ontology technologies are highly useful to organise, personalise, and publish learning content and to discover, generate, and compose learning objects

    A Linked Data Approach to Sharing Workflows and Workflow Results

    No full text
    A bioinformatics analysis pipeline is often highly elaborate, due to the inherent complexity of biological systems and the variety and size of datasets. A digital equivalent of the ‘Materials and Methods’ section in wet laboratory publications would be highly beneficial to bioinformatics, for evaluating evidence and examining data across related experiments, while introducing the potential to find associated resources and integrate them as data and services. We present initial steps towards preserving bioinformatics ‘materials and methods’ by exploiting the workflow paradigm for capturing the design of a data analysis pipeline, and RDF to link the workflow, its component services, run-time provenance, and a personalized biological interpretation of the results. An example shows the reproduction of the unique graph of an analysis procedure, its results, provenance, and personal interpretation of a text mining experiment. It links data from Taverna, myExperiment.org, BioCatalogue.org, and ConceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bioinformatics users
    • 

    corecore