747 research outputs found

    Recognising facial expressions in video sequences

    Full text link
    We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base

    Learning to transfer: transferring latent task structures and its application to person-specific facial action unit detection

    Get PDF
    In this article we explore the problem of constructing person-specific models for the detection of facial Action Units (AUs), addressing the problem from the point of view of Transfer Learning and Multi-Task Learning. Our starting point is the fact that some expressions, such as smiles, are very easily elicited, annotated, and automatically detected, while others are much harder to elicit and to annotate. We thus consider a novel problem: all AU models for the tar- get subject are to be learnt using person-specific annotated data for a reference AU (AU12 in our case), and no data or little data regarding the target AU. In order to design such a model, we propose a novel Multi-Task Learning and the associated Transfer Learning framework, in which we con- sider both relations across subjects and AUs. That is to say, we consider a tensor structure among the tasks. Our approach hinges on learning the latent relations among tasks using one single reference AU, and then transferring these latent relations to other AUs. We show that we are able to effectively make use of the annotated data for AU12 when learning other person-specific AU models, even in the absence of data for the target task. Finally, we show the excellent performance of our method when small amounts of annotated data for the target tasks are made available

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Automated 3D facial landmarks localization for 4D dataset

    Get PDF

    An Analysis of Machine- and Human-Analytics in Classification

    Get PDF
    In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that amy be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics
    • ā€¦
    corecore