151 research outputs found

    Assessing satellite-derived land product quality for earth system science applications: results from the ceos lpv sub-group

    Get PDF
    The value of satellite derived land products for science applications and research is dependent upon the known accuracy of the data. CEOS (Committee on Earth Observation Satellites), the space arm of the Group on Earth Observations (GEO), plays a key role in coordinating the land product validation process. The Land Product Validation (LPV) sub-group of the CEOS Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. This paper provides an overview of LPV sub-group focus area activities, which cover seven terrestrial Essential Climate Variables (ECVs). The contribution will enhance coordination of the scientific needs of the Earth system communities with global LPV activities

    Estimation of evapotranspiration using satellite TOA radiances

    No full text

    ECOSTRESS: NASA's next generation mission to measure evapotranspiration from the International Space Station

    Get PDF
    The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS) was launched to the International Space Station on June 29, 2018. The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as level‐3 (L3) latent heat flux (LE) data products. These data are generated from the level‐2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear‐sky ET product (L3_ET_PT‐JPL, version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear‐sky instantaneous/time of overpass: r2 = 0.88; overall bias = 8%; normalized RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are over‐represented. The 70 m high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1 km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data

    Impacts of Climate Extremes on Terrestrial Productivity

    Full text link
    Terrestrial biosphere absorbs approximately 28% of anthropogenic CO2 emissions. This terrestrial carbon sink might become saturated in a future climate regime. To explore the issues associated with this topic, an accurate estimate of gross primary production (GPP) of global terrestrial ecosystems is needed. A major uncertainty in modeling global terrestrial GPP is the parameter of light use efficiency (LUE). Most LUE estimates in global models are satellite-based and coarsely measured with emphasis on environmental variables. Others are from eddy covariance towers with much greater spatial and temporal data quality and emphasis on mechanistic processes, but in a limited number of sites. In this study, we conducted a comprehensive global study of tower-based LUE from 237 FLUXNET towers, and scaled up LUEs from in-situ tower level to global biome level. We integrated the tower-based LUE estimates with key environmental and biological variables at 0.5Âș × 0.5Âș grid-cell resolutions, using a random forest regression (RFR) approach. Then we developed a RFR-LUE-GPP model using the grid-cell LUE data. In order to calibrate the LUE model, we developed a data-driven RFR-GPP model using random forest regression method only. Our results showed LUE varies largely with latitude. We estimated a global area-weighted average of LUE at 1.23±0.03 gC m-2 MJ-1 APAR, which led to an estimate of global gross primary production (GPP) of 107.5±2.5 Gt C /year from 2001 to 2005. Large uncertainties existed in GPP estimations over sparsely vegetated areas covered by savannas and woody savannas at middle to low latitude (i.e. 20ÂșS to 40ÂșS and 5ÂșN to 40ÂșN) due to the lack of available data. Model results were improved by incorporating Köppen climate types to represent climate/meteorological information in machine learning modeling. This brought a new understanding to the recognized problem of climate-dependence of spring onset of photosynthesis and the challenges in accurately modeling the biome GPP of evergreen broad leaf forests (EBF). The divergent responses of GPP to temperature and precipitation at mid-high latitudes and at mid-low latitudes echo the necessity of modeling GPP separately by latitudes. We also used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest canopy photosynthetic capacity due to unfavorable climate extremes of 6.3 Pg C (~5.2% of global gross primary production) per growing season over 2001-2010, with evergreen broadleaf forests contributing 52% of the total reduction. At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16oC, above which terrestrial CO2 fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16oC T latitudinal belt poleward. Land surface area with T \u3e16oC and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050

    Estimation of land surface radiation budget from MODIS data

    Get PDF
    Land Surface Radiation Budget (SRB) is responsible for the available energy between the Earth and atmosphere system. Net radiation is the driving force for the transportation and exchange of all matter at the interface between the Earth's surface and the atmosphere, and therefore, significantly affects the climatic forming and change. Accurate estimation of shortwave net radiation (Sn), cloudy-sky allwave net radiation (Rn), and daily integrated Sn at high spatial resolution is essential in regional and global land surface models. The current SRB products have fine temporal and coarse spatial resolutions not suitable for land applications. New hybrid algorithm for Sn estimation has been developed in this study. Sn is estimated from MODIS data under both clear- and cloudy-sky conditions without requiring coarser resolution ancillary data. Therefore, estimated Sn retains the spatial resolution of the raw input data. Surface all-wave (both shortwave and longwave) net radiation (Rn) controls the input of latent and sensible heat flux into the atmosphere over the Earth's surface. Meteorological datasets are spatially limited and satellite data have the advantage of global spatial coverage; however, difficulty in accurately estimating cloudy-sky longwave net radiation (Ln) undermines efforts to estimate cloudy-sky all-wave net radiation. This study presents methods for estimating cloudy-sky Rn using Sn and other surface variables at 1 km spatial resolution. Daily integrated Sn is closely related to carbon, water and energy flux simulations. A daily integrated Sn product with a 1-km spatial resolution supports recent high resolution numerical climate and ecosystem simulations. This study describes a method for estimating daily integrated Sn in 1 km resolution based on instantaneous Sn data. All these algorithms have been validated using seven sites of a SURFace RADiation budget observing network (SURFRAD) in United States, instantaneous Sn is also compared with GEWEX/SRB and ISCCP data. The new hybrid algorithm developed in the study can be easily implemented to generate operational global products. These finer spatial resolution datasets capture the specific sequence of the redistribution of the available energy at the Earth's surface; therefore, they support recent high resolution land surface models

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified
    • 

    corecore