366 research outputs found

    New Approaches in Cognitive Radios using Evolutionary Algorithms

    Get PDF
    Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined

    SURF: A Distributed Channel Selection Strategy for Data Dissemination in Multi-Hop Cognitive Radio Networks

    Get PDF
    In this paper, we propose an intelligent and distributed channel selection strategy for efficient data dissemination in multi-hop cognitive radio network. Our strategy, SURF, classifies the available channels and uses them efficiently to increase data dissemination reliability in multi-hop cognitive radio networks. The classification is done on the basis of primary radio unoccupancy and of the number of cognitive radio neighbors using the channels. Through extensive NS-2 simulations, we study the performance of SURF compared to three related approaches. Simulation results confirm that our approach is effective in selecting the best channels for efficient communication (in terms of less primary radio interference) and for highest dissemination reachability in multi-hop cognitive radio networks

    Contributions to the security of cognitive radio networks

    Get PDF
    The increasing emergence of wireless applications along with the static spectrum allocation followed by regulatory bodies has led to a high inefficiency in spectrum usage, and the lack of spectrum for new services. In this context, Cognitive Radio (CR) technology has been proposed as a possible solution to reuse the spectrum being underutilized by licensed services. CRs are intelligent devices capable of sensing the medium and identifying those portions of the spectrum being unused. Based on their current perception of the environment and on that learned from past experiences, they can optimally tune themselves with regard to parameters such as frequency, coding and modulation, among others. Due to such properties, Cognitive Radio Networks (CRNs) can act as secondary users of the spectrum left unused by their legal owners or primary users, under the requirement of not interfering primary communications. The successful deployment of these networks relies on the proper design of mechanisms in order to efficiently detect spectrum holes, adapt to changing environment conditions and manage the available spectrum. Furthermore, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, the air is used as communications medium and can easily be accessed by attackers. On the other hand, the particular attributes of CRNs offer new opportunities to malicious users, ranging from providing wrong information on the radio environment to disrupting the cognitive mechanisms, which could severely undermine the operation of these networks. In this Ph.D thesis we have approached the challenge of securing Cognitive Radio Networks. Because CR technology is still evolving, to achieve this goal involves not only providing countermeasures for existing attacks but also to identify new potential threats and evaluate their impact on CRNs performance. The main contributions of this thesis can be summarized as follows. First, a critical study on the State of the Art in this area is presented. A qualitative analysis of those threats to CRNs already identified in the literature is provided, and the efficacy of existing countermeasures is discussed. Based on this work, a set of guidelines are designed in order to design a detection system for the main threats to CRNs. Besides, a high level description of the components of this system is provided, being it the second contribution of this thesis. The third contribution is the proposal of a new cross-layer attack to the Transmission Control Protocol (TCP) in CRNs. An analytical model of the impact of this attack on the throughput of TCP connections is derived, and a set of countermeasures in order to detect and mitigate the effect of such attack are proposed. One of the main threats to CRNs is the Primary User Emulation (PUE) attack. This attack prevents CRNs from using available portions of the spectrum and can even lead to a Denial of Service (DoS). In the fourth contribution of this the method is proposed in order to deal with such attack. The method relies on a set of time measures provided by the members of the network and allows estimating the position of an emitter. This estimation is then used to determine the legitimacy of a given transmission and detect PUE attacks. Cooperative methods are prone to be disrupted by malicious nodes reporting false data. This problem is addressed, in the context of cooperative location, in the fifth and last contribution of this thesis. A method based on Least Median Squares (LMS) fitting is proposed in order to detect forged measures and make the location process robust to them. The efficiency and accuracy of the proposed methodologies are demonstrated by means of simulation

    Device association for RAN slicing based on hybrid federated deep reinforcement learning

    Get PDF
    Network slicing (NS) has been widely identified as a key architectural technology for 5G-and-beyond systems by supporting divergent requirements in a sustainable way. In radio access network (RAN) slicing, due to the device-base station (BS)-NS three layer association relationship, device association (including access control and handoff management) becomes an essential yet challenging issue. With the increasing concerns on stringent data security and device privacy, exploiting local resources to solve device association problem while enforcing data security and device privacy becomes attractive. Fortunately, recently emerging federated learning (FL), a distributed learning paradigm with data protection, provides an effective tool to address this type of issues in mobile networks. In this paper, we propose an efficient device association scheme for RAN slicing by exploiting a hybrid FL reinforcement learning (HDRL) framework, with the aim to improve network throughput while reducing handoff cost. In our proposed framework, individual smart devices train a local machine learning model based on local data and then send the model features to the serving BS/encrypted party for aggregation, so as to efficiently reduce bandwidth consumption for learning while enforcing data privacy. Specifically, we use deep reinforcement learning to train the local model on smart devices under a hybrid FL framework, where horizontal FL is employed for parameter aggregation on BS, while vertical FL is employed for NS/BS pair selection aggregation on the encrypted party. Numerical results show that the proposed HDRL scheme can achieve significant performance gain in terms of network throughput and communication efficiency incomparison with some state-of-the-art solutions
    • …
    corecore