3 research outputs found

    A comparative study of clusterhead selection algorithms in wireless sensor networks

    Full text link
    In Wireless Sensor Network, sensor nodes life time is the most critical parameter. Many researches on these lifetime extension are motivated by LEACH scheme, which by allowing rotation of cluster head role among the sensor nodes tries to distribute the energy consumption over all nodes in the network. Selection of clusterhead for such rotation greatly affects the energy efficiency of the network. Different communication protocols and algorithms are investigated to find ways to reduce power consumption. In this paper brief survey is taken from many proposals, which suggests different clusterhead selection strategies and a global view is presented. Comparison of their costs of clusterhead selection in different rounds, transmission method and other effects like cluster formation, distribution of clusterheads and creation of clusters shows a need of a combined strategy for better results.Comment: 12 pages, 3 figures, 5 tables, Int JournaL, International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.4, November 201

    Cluster Head Selection in a Homogeneous Wireless Sensor Network Ensuring Full Connectivity with Minimum Isolated Nodes

    Get PDF
    The research work proposes a cluster head selection algorithm for a wireless sensor network. A node can be a cluster head if it is connected to at least one unique neighbor node where the unique neighbor is the one that is not connected to any other node. If there is no connected unique node then the CH is selected on the basis of residual energy and the number of neighbor nodes. With the increase in number of clusters, the processing energy of the network increases; hence, this algorithm proposes minimum number of clusters which further leads to increased network lifetime. The major novel contribution of the proposed work is an algorithm that ensures a completely connected network with minimum number of isolated nodes. An isolated node will remain only if it is not within the transmission range of any other node. With the maximum connectivity, the coverage of the network is automatically maximized. The superiority of the proposed design is verified by simulation results done in MATLAB, where it clearly depicts that the total numbers of rounds before the network dies out are maximum compared to other existing protocols
    corecore