5,036 research outputs found

    Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop

    Full text link
    The EMNLP 2018 workshop BlackboxNLP was dedicated to resources and techniques specifically developed for analyzing and understanding the inner-workings and representations acquired by neural models of language. Approaches included: systematic manipulation of input to neural networks and investigating the impact on their performance, testing whether interpretable knowledge can be decoded from intermediate representations acquired by neural networks, proposing modifications to neural network architectures to make their knowledge state or generated output more explainable, and examining the performance of networks on simplified or formal languages. Here we review a number of representative studies in each category

    The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision

    Full text link
    We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu

    Non-distributional Word Vector Representations

    Full text link
    Data-driven representation learning for words is a technique of central importance in NLP. While indisputably useful as a source of features in downstream tasks, such vectors tend to consist of uninterpretable components whose relationship to the categories of traditional lexical semantic theories is tenuous at best. We present a method for constructing interpretable word vectors from hand-crafted linguistic resources like WordNet, FrameNet etc. These vectors are binary (i.e, contain only 0 and 1) and are 99.9% sparse. We analyze their performance on state-of-the-art evaluation methods for distributional models of word vectors and find they are competitive to standard distributional approaches.Comment: Proceedings of ACL 201

    Sparse Overcomplete Word Vector Representations

    Full text link
    Current distributed representations of words show little resemblance to theories of lexical semantics. The former are dense and uninterpretable, the latter largely based on familiar, discrete classes (e.g., supersenses) and relations (e.g., synonymy and hypernymy). We propose methods that transform word vectors into sparse (and optionally binary) vectors. The resulting representations are more similar to the interpretable features typically used in NLP, though they are discovered automatically from raw corpora. Because the vectors are highly sparse, they are computationally easy to work with. Most importantly, we find that they outperform the original vectors on benchmark tasks.Comment: Proceedings of ACL 201
    • …
    corecore