64 research outputs found

    Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    Full text link
    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.Comment: In Proceedings FOCLASA 2011, arXiv:1107.584

    Statistical Model Checking for Stochastic Hybrid Systems

    Get PDF
    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Structural Translation of Time Petri Nets into Timed Automata

    Get PDF
    International audienceIn this paper, we consider Time Petri Nets (TPN) where time is associated with transitions. We give a formal semantics for TPNs in terms of Timed Transition Systems. Then, we propose a translation from TPNs to Timed Automata (TA) that preserves the behavioural semantics (timed bisimilarity) of the TPNs. For the theory of TPNs this result is two-fold: i) reachability problems and more generally TCTL model-checking are decidable for bounded TPNs; ii) allowing strict time constraints on transitions for TPNs preserves the results described in i). The practical applications of the translation are: i) one can specify a system using both TPNs and Timed Automata and a precise semantics is given to the composition; ii) one can use existing tools for analysing timed automata (like KRONOS or UPPAAL or CMC) to analyse TPNs

    Time At Your Service: Schedulability Analysis of Real-Time and Distributed Services

    Get PDF
    The software today is distributed over several processing units. At a large scale this may span over the globe via the internet, or at the micro scale, a software may be distributed on several small processing units embedded in one device. Real-time distributed software and services need to be timely and respond to the requests in time. The Quality of Service of real time software depends on how it schedules its tasks to be executed. The state of the art in programming distributed software, like in Java, the scheduling is left to the underlying infrastructure and in particular the operating system, which is not anymore in the control of the applications. In this thesis, we introduce a software paradigm based on object orientation in which real-time concurrent objects are enabled to specify their own scheduling strategy. We developed high-level formal models for specifying distributed software based on this paradigm in which the quality of service requirements are specified as deadlines on performing and finishing tasks. At this level we developed techniques to verify that these requirements are satisfied. This research has opened the way to a new approach to modeling and analysis of a range of applications such as continuous planning in the context of logistics software in a dynamic environment as well as developing software for multi-core systems. Industrial companies (DEAL services) and research centers (the Uppsala Programming for Multicore Architectures Resrearch Center UPMARC) have already shown interest in the results of this thesis.LEI Universiteit LeidenFoundations of Software Technolog

    Green computing: power optimisation of VFI-based real-time multiprocessor dataflow applications (extended version)

    Get PDF
    Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor frequency) help modern systems to reduce their power consumption while adhering to performance requirements. To balance flexibility and design complexity, the concept of Voltage and Frequency Islands (VFIs) was recently introduced for power optimisation. It achieves fine-grained system-level power management, by operating all processors in the same VFI at a common frequency/voltage.This paper presents a novel approach to compute a power management strategy combining DPM and DVFS. In our approach, applications (modelled in full synchronous dataflow, SDF) are mapped on heterogeneous multiprocessor platforms (partitioned in voltage and frequency islands). We compute an energy-optimal schedule, meeting minimal throughput requirements. We demonstrate that the combination of DPM and DVFS provides an energy reduction beyond considering DVFS or DMP separately. Moreover, we show that by clustering processors in VFIs, DPM can be combined with any granularity of DVFS. Our approach uses model checking, by encoding the optimisation problem as a query over priced timed automata. The model-checker Uppaal Cora extracts a cost minimal trace, representing a power minimal schedule. We illustrate our approach with several case studies on commercially available hardware
    • …
    corecore