1,938 research outputs found

    Modal Interface Automata

    Full text link
    De Alfaro and Henzinger's Interface Automata (IA) and Nyman et al.'s recent combination IOMTS of IA and Larsen's Modal Transition Systems (MTS) are established frameworks for specifying interfaces of system components. However, neither IA nor IOMTS consider conjunction that is needed in practice when a component shall satisfy multiple interfaces, while Larsen's MTS-conjunction is not closed and Bene\v{s} et al.'s conjunction on disjunctive MTS does not treat internal transitions. In addition, IOMTS-parallel composition exhibits a compositionality defect. This article defines conjunction (and also disjunction) on IA and disjunctive MTS and proves the operators to be 'correct', i.e., the greatest lower bounds (least upper bounds) wrt. IA- and resp. MTS-refinement. As its main contribution, a novel interface theory called Modal Interface Automata (MIA) is introduced: MIA is a rich subset of IOMTS featuring explicit output-must-transitions while input-transitions are always allowed implicitly, is equipped with compositional parallel, conjunction and disjunction operators, and allows a simpler embedding of IA than Nyman's. Thus, it fixes the shortcomings of related work, without restricting designers to deterministic interfaces as Raclet et al.'s modal interface theory does.Comment: 28 page

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Automated Analysis of Compositional Multi-Agent Systems

    Get PDF
    Abstract. An approach for handling the complex dynamics of a multi-agent system is based on distinguishing aggregation levels. The behaviour at a given aggregation level is specified by a set of dynamic properties at that level, expressed in some (temporal) language. Such behavioural specifications may be complex and difficult to analyse. To enable automated analysis of system specifications, a simpler format is required. To this end, a specification at a lower aggregation level can be created, describing basic steps in the processes of a system. This paper presents a method and tool to support the automated creation of such a specification, as a refinement of a given higher level specification. The generated specification has a simple format which can easily be used for analysis. This paper describes an approach for automated verification of logical consequences of specifications using model checking techniques

    Verifying OCL Specifications of UML models

    Get PDF

    Procedure-modular specification and verification of temporal safety properties

    Get PDF
    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Interactive specification and verification of behavioral adaptation contracts

    Get PDF
    International audienceContext. Adaptation is a crucial issue when building new applications by reusing existing software services which were not initially designed to interoperate with each other. Adaptation contracts describe composition constraints and adaptation requirements among these services. The writing of this specification by a designer is a difficult and error-prone task, especially when interaction protocols are considered in service interfaces. Objective. In this article, we propose a tool-based, interactive approach to support the contract design process. Method. Our approach includes: (i) a graphical notation to define port bindings, and an interface compatibility measure to compare protocols and suggest some port connections to the designer, (ii) compositional and hierarchical techniques to facilitate the specification of adaptation contracts by building them incrementally, (iii) validation and verification techniques to check that the contract will make the involved services work correctly and as expected by the designer. Results. Our results show a reduction both in the amount of effort that the designer has to put into building the contract, as well as in the number of errors present in the final result (noticeably higher in the case of manual specification). Conclusion. We conclude that it is important to provide integrated tool support for the specification and verification of adaptation contracts, since their incorrect specification induces erroneous executions of the system. To the best of our knowledge, such tool support has not been provided by any other approach so far, and hence we consider the techniques described in this paper as an important contribution to the area of behavioral software adaptation
    • ā€¦
    corecore