847 research outputs found

    A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL to analyze its schedulability by classical model checking (MC) and statistical model checking (SMC). The framework has been designed to enable three types of analysis: global SMC, global MC, and compositional MC. This allows an effective methodology including (1) quick schedulability falsification using global SMC analysis, (2) direct schedulability proofs using global MC analysis in simple cases, and (3) strict schedulability proofs using compositional MC analysis for larger state space. The framework is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

    Get PDF
    This work presents a compositional approach for schedulability analysis of Distributed Integrated Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata in UPPAAL to verify its schedulability by model checking. However, direct model checking is infeasible due to the large state space. Therefore, we introduce the compositional analysis that checks each partition including its communication environment individually. Based on a notion of message interfaces, a number of message sender automata are built to model the environment for a partition. We define a timed selection simulation relation, which supports the construction of composite message interfaces. By using assume-guarantee reasoning, we ensure that each task meets the deadline and that communication constraints are also fulfilled globally. The approach is applied to the analysis of a concrete DIMA system.Comment: In Proceedings MeTRiD 2018, arXiv:1806.09330. arXiv admin note: text overlap with arXiv:1803.1105

    Schedulability Analysis of Distributed Multi-core Avionics Systems with UPPAAL

    Get PDF

    A Compositional Framework for Avionics (ARINC-653) Systems

    Get PDF
    Cyber-physical systems (CPSs) are becoming all-pervasive, and due to increasing complexity they are designed using component-based approaches. Temporal constraints of such complex CPSs can then be modeled using hierarchical scheduling frameworks. In this paper, we consider one such avionics CPS described by ARINC specification 653-2. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads, and can communicate with other processes in the system. In this work, we develop techniques for automated scheduling of such partitions. At present, system designers manually schedule partitions based on interactions they have with application vendors. This approach is not only time consuming, but can also result in under utilization of resources. Hence, in this work we propose compositional analysis based scheduling techniques for partitions

    Model-based optimization of ARINC-653 partition scheduling

    Get PDF

    CARTS: A Tool for Compositional Analysis of Real-Time Systems

    Get PDF
    This paper demonstrates CARTS, a compositional analysis tool for real-time systems. We presented an overview of the underlying theoretical foundation and the architecture design of the tool. CARTS is open source and available for free download at http://rtg.cis.upenn.edu/carts/
    • …
    corecore