1,387 research outputs found

    A compositional minimization approach for large asynchronous design verification

    Get PDF
    pre-printThis paper presents a compositional minimization approach with efficient state space reductions for verifying non-trivial asynchronous designs. These reductions can result in a reduced model that contains the exact same set of observably equivalent behavior in the original model, therefore no false counter-examples result from the verification of the reduced model. This approach allows designs that cannot be handled monolithically or with partial-order reduction to be verified without difficulty. The experimental results show significant scale-up of the compositional minimization approach using these reductions on a number of large asynchronous designs

    Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages

    Get PDF
    In the implementation of abstract synchronous communication in asynchronous unstructured low-level languages, e.g. using shared variables, the preservation of safety and especially liveness properties is a hitherto open problem due to inherently different abstraction levels. Our approach to overcome this problem is threefold: First, we present our notion of handshake refinement with which we formally prove the correctness of the implementation relation of a handshake protocol. Second, we verify the soundness of our handshake refinement, i.e., all safety and liveness properties are preserved to the lower level. Third, we apply our handshake refinement to show the correctness of all implementations that realize the abstract synchronous communication with the handshake protocol. To this end, we employ an exemplary language with asynchronous shared variable communication. Our approach is scalable and closes the verification gap between different abstraction levels of communication

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    IST Austria Thesis

    Get PDF
    Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step

    Compositional Model Checking of Concurrent Systems

    Get PDF
    This paper presents a compositional framework to address the state explosion problem in model checking of concurrent systems. This framework takes as input a system model described as a network of communicating components in a high-level description language, finds the local state transition models for each individual component where local properties can be verified, and then iteratively reduces and composes the component state transition models to form a reduced global model for the entire system where global safety properties can be verified. The state space reductions used in this framework result in a reduced model that contains the exact same set of observably equivalent executions as in the original model, therefore, no false counter-examples result from the verification of the reduced model. This approach allows designs that cannot be handled monolithically or with partial-order reduction to be verified without difficulty. The experimental results show significant scale-up of this compositional verification framework on a number of non-trivial concurrent system models

    LIPIcs

    Get PDF
    Synchronous programs are easy to specify because the side effects of an operation are finished by the time the invocation of the operation returns to the caller. Asynchronous programs, on the other hand, are difficult to specify because there are side effects due to pending computation scheduled as a result of the invocation of an operation. They are also difficult to verify because of the large number of possible interleavings of concurrent computation threads. We present synchronization, a new proof rule that simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular verification is enabled via pending asynchronous calls in atomic summaries, and a complementary proof rule that eliminates pending asynchronous calls when components and their specifications are composed. We evaluate synchronization in the context of a multi-layer refinement verification methodology on a collection of benchmark programs

    Embedding as a tool for language comparison: on the CSP hierarchy

    Get PDF
    • …
    corecore