50 research outputs found

    Mediating Connector Patterns for Components Interoperability

    Full text link
    International audienceA key objective for ubiquitous environments is to enable system interoperability between system's components that are highly heterogeneous. In particular, the challenge is to embed in the system architecture the necessary support to cope with behavioral diversity in order to allow components to coordinate and communicate. In this paper we present the design building blocks for the dynamic and on-the-fly interoperability between heterogeneous components. Specifically, we describe an Architectural Pattern called Mediating Connector, that is the key enabler for communication. In addition, we present a set of Basic Mediator Patterns, that describe the basic mismatches which can occur when components try to interact, and their corresponding solution

    Higher-order architectural connectors

    Get PDF
    We develop a notion of higher-order connector towards supporting the systematic construction of architectural connectors for software design. A higher-order connector takes connectors as parameters and allows for services such as security protocols and fault-tolerance mechanisms to be superposed over the interactions that are handled by the connectors passed as actual arguments. The notion is first illustrated over CommUnity, a parallel program design language that we have been using for formalizing aspects of architectural design. A formal, algebraic semantics is then presented which is independent of any Architectural Description Language. Finally, we discuss how our results can impact software design methods and tools

    A Formalization of Mediating Connectors: Towards on the fly Interoperability

    Get PDF
    Mediators stand as a core architectural paradigm for today's and future systems that increasingly need be connected. The mediator concept has been used to cope with many heterogeneity dimensions spanning: terminology, representation format, transfer protocols, functionality, and application-layer protocols. Still, a key challenge for today's systems architectures is to embed the necessary support for automated mediation, i.e., the connector concept needs to evolve towards the one of mediating connectors. In this paper, we concentrate on the issue of enabling automated protocol mediation. Building upon tremendous research work in the area over the past few years we introduce a formalization of mediating connectors. The proposed formalization paves the way for automated reasoning about protocol matching and mapping, and thus for the dynamic synthesis of mediating connectors to enable eternal networked systems, which we investigate as part of the CONNECT European project

    A Theory of Mediators for Eternal Connectors

    Get PDF
    International audienceOn the fly synthesis of mediators is a revolutionary approach to the seamless networking of today's and future digital systems that increasingly need be connected. The resulting emergent mediators (or Connectors) adapt the interaction protocols run by the connected systems to let them communicate. However, although the mediator concept has been studied and used quite extensively to cope with many heterogeneity dimensions, a remaining key challenge is to support on-the-fly synthesis of mediators. Towards this end, this paper introduces a theory of mediators for the ubiquitous networking environment. The proposed formal model: (i) precisely characterizes the problem of interoperability between networked systems, and (ii) paves the way for automated reasoning about protocol matching (interoperability) and related mediator synthesis

    A Theory of Mediators for Eternal Connectors

    Get PDF
    International audienceOn the fly synthesis of mediators is a revolutionary approach to the seamless networking of today's and future digital systems that increasingly need be connected. The resulting emergent mediators (or Connectors) adapt the interaction protocols run by the connected systems to let them communicate. However, although the mediator concept has been studied and used quite extensively to cope with many heterogeneity dimensions, a remaining key challenge is to support on-the-fly synthesis of mediators. Towards this end, this paper introduces a theory of mediators for the ubiquitous networking environment. The proposed formal model: (i) precisely characterizes the problem of interoperability between networked systems, and (ii) paves the way for automated reasoning about protocol matching (interoperability) and related mediator synthesis
    corecore