9,168 research outputs found

    A new mechanical structural damage feature index based on HHT

    Get PDF
    A new damage feature index is presented for the structural health monitoring based on Hilbert-Huang transform (HHT). The energy marginal spectrum of the dynamic signal is used to construct damage characteristic parameter, which can reflect the signal energy variation and benefit the structural damage detection. A sinusoidal wave with frequency change and a composite plate vibration experiment with pre-defined damage are designed to verify the effectiveness of characteristic parameter in damage detection. Results obtained from simulation and test show that the extracted non-model-based damage feature index is available and sensitive in damage detection of time-varying system.Peer Reviewe

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Curvelet Approach for SAR Image Denoising, Structure Enhancement, and Change Detection

    Get PDF
    In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients. By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Damage detection in beams from modal and wavelet analysis using a stationary roving mass and noise estimation

    Get PDF
    This paper uses the Continuous Wavelet Transform Analysis on mode shapes for damage identification. The wavelet analysis is applied to the difference in the mode shapes between a healthy and a damaged state. The paper also includes a novel methodology for estimating the level of noise of the experimental mode shapes based on a standard Signal to Noise Ratio (SNR). The estimated SNRs are used for identifying and making emphasis on the less noisy data. Moreover, a mass attached to the structure is considered to enhance the sensitivity of the structure to damage. Modal analysis is performed for different positions of the mass along the beam. The results obtained for all the positions of the mass are combined so an averaging process is implicitly applied. The paper presents the results from an experimental test of a cantilever steel beam with different severity levels of damage at the same location. The results show that the use of the attached mass reduces the effect of noise and increases the sensitivity to damage. Little damage can be identified with the proposed methodology even using a small number of sensors and only the first five bending modesConsejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. Grant Number: P12-TEP-2546Ministerio de Economía y Competitividad. Grant Numbers: BIA2013-43085-P, BIA2016-75042-C2-1-

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Time-scale analysis of abrupt changes corrupted by multiplicative noise

    Get PDF
    Multiplicative Abrupt Changes (ACs) have been considered in many applications. These applications include image processing (speckle) and random communication models (fading). Previous authors have shown that the Continuous Wavelet Transform (CWT) has good detection properties for ACs in additive noise. This work applies the CWT to AC detection in multiplicative noise. CWT translation invariance allows to define an AC signature. The problem then becomes signature detection in the time-scale domain. A second-order contrast criterion is defined as a measure of detection performance. This criterion depends upon the first- and second-order moments of the multiplicative process's CWT. An optimal wavelet (maximizing the contrast) is derived for an ideal step in white multiplicative noise. This wavelet is asymptotically optimal for smooth changes and can be approximated for small AC amplitudes by the Haar wavelet. Linear and quadratic suboptimal signature-based detectors are also studied. Closed-form threshold expressions are given as functions of the false alarm probability for three of the detectors. Detection performance is characterized using Receiver Operating Characteristic (ROC) curves computed from Monte-Carlo simulations
    corecore