2,634 research outputs found

    A Component-Based Dataflow Framework for Simulation and Visualization

    Get PDF

    A Component-Based Dataflow Framework for Simulation and Visualization

    Get PDF

    A Component-Based Dataflow Framework for Simulation and Visualization

    Get PDF

    Automatic visualization and control of arbitrary numerical simulations

    Get PDF
    Authors’ preprint version as submitted to ECCOMAS Congress 2016, Minisymposium 505 - Interactive Simulations in Computational Engineering. Abstract: Visualization of numerical simulation data has become a cornerstone for many industries and research areas today. There exists a large amount of software support, which is usually tied to specific problem domains or simulation platforms. However, numerical simulations have commonalities in the building blocks of their descriptions (e. g., dimensionality, range constraints, sample frequency). Instead of encoding these descriptions and their meaning into software architecures we propose to base their interpretation and evaluation on a data-centric model. This approach draws much inspiration from work of the IEEE Simulation Interoperability Standards Group as currently applied in distributed (military) training and simulation scenarios and seeks to extend those ideas. By using an extensible self-describing protocol format, simulation users as well as simulation-code providers would be able to express the meaning of their data even if no access to the underlying source code was available or if new and unforseen use cases emerge. A protocol definition will allow simulation-domain experts to describe constraints that can be used for automatically creating appropriate visualizations of simulation data and control interfaces. Potentially, this will enable leveraging innovations on both the simulation and visualization side of the problem continuum. We envision the design and development of algorithms and software tools for the automatic visualization of complex data from numerical simulations executed on a wide variety of platforms (e. g., remote HPC systems, local many-core or GPU-based systems). We also envisage using this automatically gathered information to control (or steer) the simulation while it is running, as well as providing the ability for fine-tuning representational aspects of the visualizations produced

    Automatic visualization and control of arbitrary numerical simulations

    Get PDF
    Authors’ preprint version as submitted to ECCOMAS Congress 2016, Minisymposium 505 - Interactive Simulations in Computational Engineering. Abstract: Visualization of numerical simulation data has become a cornerstone for many industries and research areas today. There exists a large amount of software support, which is usually tied to specific problem domains or simulation platforms. However, numerical simulations have commonalities in the building blocks of their descriptions (e. g., dimensionality, range constraints, sample frequency). Instead of encoding these descriptions and their meaning into software architecures we propose to base their interpretation and evaluation on a data-centric model. This approach draws much inspiration from work of the IEEE Simulation Interoperability Standards Group as currently applied in distributed (military) training and simulation scenarios and seeks to extend those ideas. By using an extensible self-describing protocol format, simulation users as well as simulation-code providers would be able to express the meaning of their data even if no access to the underlying source code was available or if new and unforseen use cases emerge. A protocol definition will allow simulation-domain experts to describe constraints that can be used for automatically creating appropriate visualizations of simulation data and control interfaces. Potentially, this will enable leveraging innovations on both the simulation and visualization side of the problem continuum. We envision the design and development of algorithms and software tools for the automatic visualization of complex data from numerical simulations executed on a wide variety of platforms (e. g., remote HPC systems, local many-core or GPU-based systems). We also envisage using this automatically gathered information to control (or steer) the simulation while it is running, as well as providing the ability for fine-tuning representational aspects of the visualizations produced

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Combining Object Orientation and Dataflow Modelling in the VISSION Simulation System

    Get PDF

    OpenAlea: A visual programming and component-based software platform for plant modeling

    Get PDF
    International audienceAs illustrated by the approaches presented during the 5th FSPM workshop (Prusinkiewicz and Hanan 2007, and this issue), the development of functional-structural plant models requires an increasing amount of computer modeling. All these models are developed by different teams in various contexts and with different goals. Efficient and flexible computational frameworks are required to augment the interaction between these models, their reusability, and the possibility to compare them on identical datasets. In this paper, we present an open-source platform, OpenAlea, that provides a user-friendly environment for modelers, and advanced deployment methods. OpenAlea allows researchers to build models using a visual programming interface and provides a set of tools and models dedicated to plant modeling. Models and algorithms are embedded in OpenAlea components with well defined input and output interfaces that can be easily interconnected to form more complex models and define more macroscopic components. The system architecture is based on the use of a general purpose, high-level, object-oriented script language, Python, widely used in other scientific areas. We briefly present the rationale that underlies the architectural design of this system and we illustrate the use of the platform to assemble several heterogeneous model components and to rapidly prototype a complex modeling scenario

    Combining Object Orientation and Dataflow Modeling in the VISSION Simulation System

    Get PDF
    • …
    corecore