13,453 research outputs found

    Modeling and Analyzing Adaptive User-Centric Systems in Real-Time Maude

    Full text link
    Pervasive user-centric applications are systems which are meant to sense the presence, mood, and intentions of users in order to optimize user comfort and performance. Building such applications requires not only state-of-the art techniques from artificial intelligence but also sound software engineering methods for facilitating modular design, runtime adaptation and verification of critical system requirements. In this paper we focus on high-level design and analysis, and use the algebraic rewriting language Real-Time Maude for specifying applications in a real-time setting. We propose a generic component-based approach for modeling pervasive user-centric systems and we show how to analyze and prove crucial properties of the system architecture through model checking and simulation. For proving time-dependent properties we use Metric Temporal Logic (MTL) and present analysis algorithms for model checking two subclasses of MTL formulas: time-bounded response and time-bounded safety MTL formulas. The underlying idea is to extend the Real-Time Maude model with suitable clocks, to transform the MTL formulas into LTL formulas over the extended specification, and then to use the LTL model checker of Maude. It is shown that these analyses are sound and complete for maximal time sampling. The approach is illustrated by a simple adaptive advertising scenario in which an adaptive advertisement display can react to actions of the users in front of the display.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    The 3DMA Middleware for Mobile Applications

    Get PDF
    Mobile devices have received much research interest in re- cent years. Mobility raises new issues such as more dynamic context, limited computing resources, and frequent disconnections. To handle these issues, we propose a middleware, called 3DMA, which introduces three requirements, 1) distribution, 2) decoupling and 3) decomposition. 3DMA uses a space based middleware approach combined with a set of workers which are able to act on the users behalf either to reduce load on the mobile device, or to support disconnected behavior. In order to demonstrate aspects of the middleware architecture we consider the development of a commonly used mobile application

    VOLARE: Adaptive Web Service Discovery Middleware for Mobile Systems

    Get PDF
    With the recent advent and widespread use of smart mobile devices, the flexibility and versatility offered by Service Oriented Architecture's (SOA) makes it an ideal approach to use in the rapidly changing mobile environment. However, the mobile setting presents a set of new challenges that service discovery methods developed for nonmobile environments cannot address. The requirements a mobile client device will have from a Web service may change due to changes in the context or the resources of the client device. In a similar manner, a mobile device that acts as a Web service provider will have different capabilities depending on its status, which may also change dramatically during runtime. This paper introduces VOLARE, a middleware-based solution that will monitor the resources and context of the device, and adapt service requests accordingly. The same method will be used to adapt the Quality of Service (QoS) levels advertised by service providers, to realistically reflect each provider's capabilities at any given moment. This approach will allow for more resource-efficient and accurate service discovery in mobile systems and will enable more reliable provider functionality in mobile devices
    • …
    corecore