8,842 research outputs found

    A complexity dichotomy for partition functions with mixed signs

    Get PDF
    Partition functions, also known as homomorphism functions, form a rich family of graph invariants that contain combinatorial invariants such as the number of k-colourings or the number of independent sets of a graph and also the partition functions of certain "spin glass" models of statistical physics such as the Ising model. Building on earlier work by Dyer, Greenhill and Bulatov, Grohe, we completely classify the computational complexity of partition functions. Our main result is a dichotomy theorem stating that every partition function is either computable in polynomial time or #P-complete. Partition functions are described by symmetric matrices with real entries, and we prove that it is decidable in polynomial time in terms of the matrix whether a given partition function is in polynomial time or #P-complete. While in general it is very complicated to give an explicit algebraic or combinatorial description of the tractable cases, for partition functions described by a Hadamard matrices -- these turn out to be central in our proofs -- we obtain a simple algebraic tractability criterion, which says that the tractable cases are those "representable" by a quadratic polynomial over the field GF(2)

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    On Tractable Exponential Sums

    Full text link
    We consider the problem of evaluating certain exponential sums. These sums take the form ∑x1,...,xn∈ZNef(x1,...,xn)2πi/N\sum_{x_1,...,x_n \in Z_N} e^{f(x_1,...,x_n) {2 \pi i / N}} , where each x_i is summed over a ring Z_N, and f(x_1,...,x_n) is a multivariate polynomial with integer coefficients. We show that the sum can be evaluated in polynomial time in n and log N when f is a quadratic polynomial. This is true even when the factorization of N is unknown. Previously, this was known for a prime modulus N. On the other hand, for very specific families of polynomials of degree \ge 3, we show the problem is #P-hard, even for any fixed prime or prime power modulus. This leads to a complexity dichotomy theorem - a complete classification of each problem to be either computable in polynomial time or #P-hard - for a class of exponential sums. These sums arise in the classifications of graph homomorphisms and some other counting CSP type problems, and these results lead to complexity dichotomy theorems. For the polynomial-time algorithm, Gauss sums form the basic building blocks. For the hardness results, we prove group-theoretic necessary conditions for tractability. These tests imply that the problem is #P-hard for even very restricted families of simple cubic polynomials over fixed modulus N
    • …
    corecore