79 research outputs found

    On the worst case complexity of potential reduction algorithms for linear programming

    Get PDF
    Includes bibliographical references (p. 16-17).Supported by a Presidential Young Investigator Award. DDM-9158118 Supported by Draper Laboratory.Dimitris Bertsimas and Xiaodong Luo

    Adapting the interior point method for the solution of LPs on serial, coarse grain parallel and massively parallel computers

    Get PDF
    In this paper we describe a unified scheme for implementing an interior point algorithm (IPM) over a range of computer architectures. In the inner iteration of the IPM a search direction is computed using Newton's method. Computationally this involves solving a sparse symmetric positive definite (SSPD) system of equations. The choice of direct and indirect methods for the solution of this system, and the design of data structures to take advantage of serial, coarse grain parallel and massively parallel computer architectures, are considered in detail. We put forward arguments as to why integration of the system within a sparse simplex solver is important and outline how the system is designed to achieve this integration

    Complexity analysis of a linear complementarity algorithm based on a Lyapunov function

    Get PDF
    Cover title. "Revised version of LIDS-P-1819."Includes bibliographical references.Partially supported by the U.S. Army Research Office (Center for Intelligent Control Systems) DAAL03-86-K-0171 Partially supported by the National Science Foundation. NSF-ECS-8519058by Paul Tseng

    On the convergence of the affine-scaling algorithm

    Get PDF
    Cover title.Includes bibliographical references (p. 20-22).Research partially supported by the National Science Foundation. NSF-ECS-8519058 Research partially supported by the U.S. Army Research Office. DAAL03-86-K-0171 Research partially supported by the Science and Engineering Research Board of McMaster University.by Paul Tseng and Zhi-Quan Luo

    Convergence property of the Iri-Imai algorithm for some smooth convex programming problems

    Get PDF
    In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity, called the harmonic convexity in this paper. A characterization of this convexity condition is given. The same convexity condition was used by Mehrotra and Sun to prove the convergence of a path-following algorithm. The Iri-Imai algorithm is a natural generalization of the original Newton algorithm to constrained convex programming. Other known convergent interior-point algorithms for smooth convex programming are mainly based on the path-following approach

    Theoretical Efficiency of A Shifted Barrier Function Algorithm for Linear Programming

    Get PDF
    This paper examines the theoretical efficiency of solving a standard-form linear program by solving a sequence of shifted-barrier problems of the form minimize cTx - n (xj + ehj) j.,1 x s.t. Ax = b , x + e h > , for a given and fixed shift vector h > 0, and for a sequence of values of > 0 that converges to zero. The resulting sequence of solutions to the shifted barrier problems will converge to a solution to the standard form linear program. The advantage of using the shiftedbarrier approach is that a starting feasible solution is unnecessary, and there is no need for a Phase I-Phase II approach to solving the linear program, either directly or through the addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm start," i.e., an initial guess of a primal solution x that need not be feasible. The number of iterations needed to solve the linear program to a desired level of accuracy will depend on a measure of how close the initial solution x is to being feasible. The number of iterations will also depend on the judicious choice of the shift vector h . If an approximate center of the dual feasible region is known, then h can be chosen so that the guaranteed fractional decrease in e at each iteration is (1 - 1/(6 i)) , which contributes a factor of 6 ii to the number of iterations needed to solve the problem. The paper also analyzes the complexity of computing an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly infeasible) guess ir of a solution to the center problem of the dual. Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier function, Newton step

    Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function

    Get PDF
    Includes bibliographical references (p. 28-29).by Robert M. Freund
    • …
    corecore