35,438 research outputs found

    A Logic for Constraint-based Security Protocol Analysis

    Get PDF
    We propose PS-LTL, a pure-past security linear temporal logic that allows the specification of a variety of authentication, secrecy and data freshness properties. Furthermore, we present a sound and complete decision procedure to establish the validity of security properties for symbolic execution traces, and show the integration with constraint-based analysis techniques

    PS-LTL for constraint-based security protocol analysis

    Get PDF
    Several formal approaches have been proposed to analyse security protocols, e.g. [2,7,11,1,6,12]. Recently, a great interest has been growing on the use of constraint solving approach. Initially proposed by Millen and Shmatikov [9], this approach allows analysis of a finite number of protocol sessions. Yet, the representation of protocol runs by symbolic traces (as opposed to concrete traces) captures the possibility of having unbounded message space, allowing analysis over an infinite state space. A constraint is defined as a pair consisting of a message M and a set of messages K that represents the intruderĀæs knowledge. Millen and Shmatikov present a procedure to solve a set of constraints, i.e. that in each constraint, M can be built from K. When a set of constraints is solved, then a concrete trace representing an attack over the protocol can be extracted. \ud Corin and Etalle [4] has improved the work of Millen and Shmatikov by presenting a more efficient procedure. However, none of these constraint-based systems provide enough flexibility and expresiveness in specifying security properties. For example, to check secrecy an artificial protocol role is added to simulate whether a secret can be learned by an intruder. Authentication cannot also be checked directly. Moreover, only a built-in notion of authentication is implemented by Millen and Shmatikov in his Prolog implementation [10]. This problem motivates our current work. \ud A logical formalism is considered to be an appropriate solution to improve the flexibility and expresiveness in specifying security properties. A preliminary attempt to use logic for specifying local security properties in a constraint-based setting has been carried out [3]. Inspired by this work and the successful NPATRL [11,8], we currently explores a variant of linear temporal logic (LTL) over finite traces, -LTL, standing for pure-past security LTL [5]. In contrast to standard LTL, this logic deals only with past events in a trace. In our current work, a protocol is modelled as in previous works [9,4,3], viz. by protocol roles. A protocol role is a sequence of send and receive events, together with status events to indicate, e.g. that a protocol role has completed her protocol run. A scenario is then used to deal with the number of sessions and protocol roles considered in the analysis. \ud Integrating -LTL into our constraint solving approach presents a challenge, since we need to develop a sound and complete decision procedure against symbolic traces, instead of concrete traces. Our idea to address this problem is by concretizing symbolic traces incrementally while deciding a formula. Basically, the decision procedure consists of two steps: transform and decide. The former step transforms a -LTL formula with respect to the current trace into a so-called elementary formula that is built from constraints and equalities using logical connectives and quantifiers. The decision is then performed by the latter step through solving the constraints and checking the equalities. \ud Although we define a decision procedure for a fragment of -LTL, this fragment is expressive enough to specify several security properties, like various notions of secrecy and authentication, and also data freshness. We provide a Prolog implementation and have analysed several security protocols. \ud There are many directions for improvement. From the implementation point of view, the efficiency of the decision procedure can still be improved. I would also like to investigate the expressiveness of the logic for speficying other security properties. This may result in an extension of the decision procedure for a larger fragment of the logic. Another direction is to characterize the expressivity power of -LTL compared to other security requirement languages

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    Improving Air Interface User Privacy in Mobile Telephony

    Full text link
    Although the security properties of 3G and 4G mobile networks have significantly improved by comparison with 2G (GSM), significant shortcomings remain with respect to user privacy. A number of possible modifications to 2G, 3G and 4G protocols have been proposed designed to provide greater user privacy; however, they all require significant modifications to existing deployed infrastructures, which are almost certainly impractical to achieve in practice. In this article we propose an approach which does not require any changes to the existing deployed network infrastructures or mobile devices, but offers improved user identity protection over the air interface. The proposed scheme makes use of multiple IMSIs for an individual USIM to offer a degree of pseudonymity for a user. The only changes required are to the operation of the authentication centre in the home network and to the USIM, and the scheme could be deployed immediately since it is completely transparent to the existing mobile telephony infrastructure. We present two different approaches to the use and management of multiple IMSIs

    Verification of the TESLA protocol in MCMAS-X

    Get PDF
    We present MCMAS-X, an extension of the OBDD-based model checker MCMAS for multi-agent systems, to explicit and deductive knowledge. We use MCMAS-X to verify authentication properties in the TESLA secure stream protocol

    Changing users' security behaviour towards security questions: A game based learning approach

    Full text link
    Fallback authentication is used to retrieve forgotten passwords. Security questions are one of the main techniques used to conduct fallback authentication. In this paper, we propose a serious game design that uses system-generated security questions with the aim of improving the usability of fallback authentication. For this purpose, we adopted the popular picture-based "4 Pics 1 word" mobile game. This game was selected because of its use of pictures and cues, which previous psychology research found to be crucial to aid memorability. This game asks users to pick the word that relates to the given pictures. We then customized this game by adding features which help maximize the following memory retrieval skills: (a) verbal cues - by providing hints with verbal descriptions, (b) spatial cues - by maintaining the same order of pictures, (c) graphical cues - by showing 4 images for each challenge, (d) interactivity/engaging nature of the game.Comment: 6, Military Communications and Information Systems Conference (MilCIS), 2017. arXiv admin note: substantial text overlap with arXiv:1707.0807
    • ā€¦
    corecore