221 research outputs found

    Axiomatizing Flat Iteration

    Full text link
    Flat iteration is a variation on the original binary version of the Kleene star operation P*Q, obtained by restricting the first argument to be a sum of atomic actions. It generalizes prefix iteration, in which the first argument is a single action. Complete finite equational axiomatizations are given for five notions of bisimulation congruence over basic CCS with flat iteration, viz. strong congruence, branching congruence, eta-congruence, delay congruence and weak congruence. Such axiomatizations were already known for prefix iteration and are known not to exist for general iteration. The use of flat iteration has two main advantages over prefix iteration: 1.The current axiomatizations generalize to full CCS, whereas the prefix iteration approach does not allow an elimination theorem for an asynchronous parallel composition operator. 2.The greater expressiveness of flat iteration allows for much shorter completeness proofs. In the setting of prefix iteration, the most convenient way to obtain the completeness theorems for eta-, delay, and weak congruence was by reduction to the completeness theorem for branching congruence. In the case of weak congruence this turned out to be much simpler than the only direct proof found. In the setting of flat iteration on the other hand, the completeness theorems for delay and weak (but not eta-) congruence can equally well be obtained by reduction to the one for strong congruence, without using branching congruence as an intermediate step. Moreover, the completeness results for prefix iteration can be retrieved from those for flat iteration, thus obtaining a second indirect approach for proving completeness for delay and weak congruence in the setting of prefix iteration.Comment: 15 pages. LaTeX 2.09. Filename: flat.tex.gz. On A4 paper print with: dvips -t a4 -O -2.15cm,-2.22cm -x 1225 flat. For US letter with: dvips -t letter -O -0.73in,-1.27in -x 1225 flat. More info at http://theory.stanford.edu/~rvg/abstracts.html#3

    A Complete Equational Axiomatization for Prefix Iteration with Silent Steps

    Full text link

    Axiomatizing Prefix Iteration with Silent Steps

    Get PDF
    Prefix iteration is a variation on the original binary version of the Kleene star operation P*Q, obtained by restricting the first argument to be an atomic action. The interaction of prefix iteration with silent steps is studied in the setting of Milner's basic CCS. Complete equational axiomatizations are given for four notions of behavioural congruence over basic CCS with prefix iteration, viz. branching congruence, eta-congruence, delay congruence and weak congruence. The completeness proofs for eta-, delay, and weak congruence are obtained by reduction to the completeness theorem for branching congruence. It is also argued that the use of the completeness result for branching congruence in obtaining the completeness result for weak congruence leads to a considerable simplification with respect to the only direct proof presented in the literature. The preliminaries and the completeness proofs focus on open terms, i.e. terms that may contain process variables. As a by-product, the omega-completeness of the axiomatizations is obtained as well as their completeness for closed terms. AMS Subject Classification (1991): 68Q10, 68Q40, 68Q55.CR Subject Classification (1991): D.3.1, F.1.2, F.3.2.Keywords and Phrases: Concurrency, process algebra, basic CCS, prefix iteration, branching bisimulation, eta-bisimulation, delay bisimulation, weak bisimulation, equational logic, complete axiomatizations

    A Cook’s Tour of Equational Axiomatizations for Prefix Iteration

    Get PDF
    Prefix iteration is a variation on the original binary version of theKleene star operation P*Q, obtained by restricting the first argument to be an atomic action, and yields simple iterative behaviours that can be equationally characterized by means of finite collections of axioms. In this paper, we present axiomatic characterizations for a significant fragment of the notions of equivalence and preorder in van Glabbeek's linear-time/branching-time spectrum over Milner's basic CCS extended with prefix iteration. More precisely, we consider ready simulation, simulation, readiness, trace and language semantics, and provide complete (in)equational axiomatizations for each of these notions over BCCS with prefix iteration. All of the axiom systems we present are finite, if so is the set of atomic actions under consideration

    An Equational Axiomatization for Multi-Exit Iteration

    Get PDF
    This paper presents an equational axiomatization of bisimulation equivalence over the language of Basic Process Algebra (BPA) with multi-exit iteration. Multi-exit iteration is a generalization of the standard binary Kleene star operation that allows for the specification of agents that, up to bisimulation equivalence, are solutionsof systems of recursion equations of the formX1 = P1 X2 + Q1...Xn = Pn X1 + Qnwhere n is a positive integer, and the Pi and the Qi are process terms. The additionof multi-exit iteration to BPA yields a more expressive language than that obtained by augmenting BPA with the standard binary Kleene star (BPA). As aconsequence, the proof of completeness of the proposed equational axiomatizationfor this language, although standard in its general structure, is much more involvedthan that for BPA. An expressiveness hierarchy for the family of k-exit iteration operators proposed by Bergstra, Bethke and Ponse is also offered.

    Equational Axioms for Probabilistic Bisimilarity (Preliminary Report)

    Get PDF
    This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finite-state agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571-595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational properties of the fixed point operator on (omega-)continuous or monotonic functions, with three axiom schemas that express laws that are specific to probabilistic bisimilarity. Hence probabilistic bisimilarity (over finite-state agents) has an equational axiomatization relative to iteration algebras

    Process algebra with recursive operations

    Get PDF
    corecore