57,925 research outputs found

    The Axiomatic Structure of Empirical Content

    Get PDF
    In this paper, we provide a formal framework for studying the empirical content of a given theory. We define the falsifiable closure of a theory to be the least weakening of the theory that makes only falsifiable claims. The falsifiable closure is our notion of empirical content. We prove that the empirical content of a theory can be exactly captured by a certain kind of axiomatization, one that uses axioms which are universal negations of conjunctions of atomic formulas. The falsifiable closure operator has the structure of a topological closure, which has implications, for example, for the behavior of joint vis a vis single hypotheses. The ideas here are useful for understanding theories whose empirical content is well-understood (for example, we apply our framework to revealed preference theory, and Afriat's theorem), but they can also be applied to theories with no known axiomatization. We present an application to the theory of multiple selves, with a fixed finite set of selves and where selves are aggregated according to a neutral rule satisfying independence of irrelevant alternatives. We show that multiple selves theories are fully falsifiable, in the sense that they are equivalent to their empirical content

    Existence of optimal ultrafilters and the fundamental complexity of simple theories

    Full text link
    In the first edition of Classification Theory, the second author characterized the stable theories in terms of saturation of ultrapowers. Prior to this theorem, stability had already been defined in terms of counting types, and the unstable formula theorem was known. A contribution of the ultrapower characterization was that it involved sorting out the global theory, and introducing nonforking, seminal for the development of stability theory. Prior to the present paper, there had been no such characterization of an unstable class. In the present paper, we first establish the existence of so-called optimal ultrafilters on Boolean algebras, which are to simple theories as Keisler's good ultrafilters are to all theories. Then, assuming a supercompact cardinal, we characterize the simple theories in terms of saturation of ultrapowers. To do so, we lay the groundwork for analyzing the global structure of simple theories, in ZFC, via complexity of certain amalgamation patterns. This brings into focus a fundamental complexity in simple unstable theories having no real analogue in stability.Comment: The revisions aim to separate the set theoretic and model theoretic aspects of the paper to make it accessible to readers interested primarily in one side. We thank the anonymous referee for many thoughtful comment
    • …
    corecore