314 research outputs found

    Vesyla-II: An Algorithm Library Development Tool for Synchoros VLSI Design Style

    Full text link
    High-level synthesis (HLS) has been researched for decades and is still limited to fast FPGA prototyping and algorithmic RTL generation. A feasible end-to-end system-level synthesis solution has never been rigorously proven. Modularity and composability are the keys to enabling such a system-level synthesis framework that bridges the huge gap between system-level specification and physical level design. It implies that 1) modules in each abstraction level should be physically composable without any irregular glue logic involved and 2) the cost of each module in each abstraction level is accurately predictable. The ultimate reasons that limit how far the conventional HLS can go are precisely that it cannot generate modular designs that are physically composable and cannot accurately predict the cost of its design. In this paper, we propose Vesyla, not as yet another HLS tool, but as a synthesis tool that positions itself in a promising end-to-end synthesis framework and preserving its ability to generate physically composable modular design and to accurately predict its cost metrics. We present in the paper how Vesyla is constructed focusing on the novel platform it targets and the internal data structures that highlights the uniqueness of Vesyla. We also show how Vesyla will be positioned in the end-to-end synchoros synthesis framework called SiLago

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size

    Just In Time Assembly (JITA) - A Run Time Interpretation Approach for Achieving Productivity of Creating Custom Accelerators in FPGAs

    Get PDF
    The reconfigurable computing community has yet to be successful in allowing programmers to access FPGAs through traditional software development flows. Existing barriers that prevent programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the need to work within the vendor specific CAD tools and hardware synthesis. This thesis presents a series of published papers that explore different aspects of a new approach being developed to remove the barriers and enable programmers to compile accelerators on next generation reconfigurable manycore architectures. The approach is entitled Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow hardware accelerators to be built and run through software compilation and run time interpretation outside of CAD tools and without requiring each new accelerator to be synthesized. The approach advocates the use of libraries of pre-synthesized components that can be referenced through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis still must occur but is moved out of the application programmers software flow and into the initial coding process that occurs when programming patterns that define a Domain Specific Language (DSL) are first coded. Programmers see no difference between creating software or hardware functionality when using the DSL. A new run time interpreter is introduced to assemble the individual pre-synthesized hardware accelerators that comprise the accelerator functionality within a configurable tile array of partially reconfigurable slots at run time. Quantitative results are presented that compares utilization, performance, and productivity of the approach to what would be achieved by full custom accelerators created through traditional CAD flows using hardware programming models and passing through synthesis

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    Are coarse-grained overlays ready for general purpose application acceleration on FPGAs?

    Get PDF
    Combining processors with hardware accelerators has become a norm with systems-on-chip (SoCs) ever present in modern compute devices. Heterogeneous programmable system on chip platforms sometimes referred to as hybrid FPGAs, tightly couple general purpose processors with high performance reconfigurable fabrics, providing a more flexible alternative. We can now think of a software application with hardware accelerated portions that are reconfigured at runtime. While such ideas have been explored in the past, modern hybrid FPGAs are the first commercial platforms to enable this move to a more software oriented view, where reconfiguration enables hardware resources to be shared by multiple tasks in a bigger application. However, while the rapidly increasing logic density and more capable hard resources found in modern hybrid FPGA devices should make them widely deployable, they remain constrained within specialist application domains. This is due to both design productivity issues and a lack of suitable hardware abstraction to eliminate the need for working with platform-specific details, as server and desktop virtualization has done in a more general sense. To allow mainstream adoption of FPGA based accelerators in general purpose computing, there is a need to virtualize FPGAs and make them more accessible to application developers who are accustomed to software API abstractions and fast development cycles. In this paper, we discuss the role of overlay architectures in enabling general purpose FPGA application acceleration

    Energy proportional computing with OpenCL on a FPGA-based overlay architecture

    Get PDF

    Accelerating legacy applications with spatial computing devices

    Get PDF
    Heterogeneous computing is the major driving factor in designing new energy-efficient high-performance computing systems. Despite the broad adoption of GPUs and other specialized architectures, the interest in spatial architectures like field-programmable gate arrays (FPGAs) has grown. While combining high performance, low power consumption and high adaptability constitute an advantage, these devices still suffer from a weak software ecosystem, which forces application developers to use tools requiring deep knowledge of the underlying system, often leaving legacy code (e.g., Fortran applications) unsupported. By realizing this, we describe a methodology for porting Fortran (legacy) code on modern FPGA architectures, with the target of preserving performance/power ratios. Aimed as an experience report, we considered an industrial computational fluid dynamics application to demonstrate that our methodology produces synthesizable OpenCL codes targeting Intel Arria10 and Stratix10 devices. Although performance gain is not far beyond that of the original CPU code (we obtained a relative speedup of x 0.59 and x 0.63, respectively, for a single optimized main kernel, while only on the Stratix10 we achieved x 2.56 by replicating the main optimized kernel 4 times), our results are quite encouraging to drawn the path for further investigations. This paper also reports some major criticalities in porting Fortran code on FPGA architectures
    • …
    corecore